These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 24187485)

  • 1. Advances in the proteomic discovery of novel therapeutic targets in cancer.
    Guo S; Zou J; Wang G
    Drug Des Devel Ther; 2013; 7():1259-71. PubMed ID: 24187485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances of proteomics technologies for multidrug-resistant mechanisms.
    Zhang T; Yuan Q; Gu Z; Xue C
    Future Med Chem; 2019 Oct; 11(19):2573-2593. PubMed ID: 31633396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The path to oncology drug target validation: an industry perspective.
    Cortés-Cros M; Schmelzle T; Stucke VM; Hofmann F
    Methods Mol Biol; 2013; 986():3-13. PubMed ID: 23436402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel anticancer agents in clinical development.
    Adjei AA; Rowinsky EK
    Cancer Biol Ther; 2003; 2(4 Suppl 1):S5-15. PubMed ID: 14508076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing the power of proteomics for identification of oncogenic, druggable signalling pathways in cancer.
    Murray HC; Dun MD; Verrills NM
    Expert Opin Drug Discov; 2017 May; 12(5):431-447. PubMed ID: 28286965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy.
    Hua H; Kong Q; Yin J; Zhang J; Jiang Y
    J Hematol Oncol; 2020 Jun; 13(1):64. PubMed ID: 32493414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oncoproteomics.
    Joshi S; Tiwari AK; Mondal B; Sharma A
    Clin Chim Acta; 2011 Jan; 412(3-4):217-26. PubMed ID: 20955692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modeling in cancer drug discovery.
    Wang Z; Deisboeck TS
    Drug Discov Today; 2014 Feb; 19(2):145-50. PubMed ID: 23831857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications.
    Jimenez CR; Verheul HM
    Am Soc Clin Oncol Educ Book; 2014; ():e504-10. PubMed ID: 24857147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular insights into cancer drug resistance from a proteomics perspective.
    An Y; Zhou L; Huang Z; Nice EC; Zhang H; Huang C
    Expert Rev Proteomics; 2019 May; 16(5):413-429. PubMed ID: 30925852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting protein-protein interactions as an anticancer strategy.
    Ivanov AA; Khuri FR; Fu H
    Trends Pharmacol Sci; 2013 Jul; 34(7):393-400. PubMed ID: 23725674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. INTEGRATING GENETIC AND STRUCTURAL DATA ON HUMAN PROTEIN KINOME IN NETWORK-BASED MODELING OF KINASE SENSITIVITIES AND RESISTANCE TO TARGETED AND PERSONALIZED ANTICANCER DRUGS.
    Verkhivker GM
    Pac Symp Biocomput; 2016; 21():45-56. PubMed ID: 26776172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Proteomic Drug Targets, Therapeutic Strategies and Protein - Protein Interactions in Cancer: Mechanistic View.
    Dar KB; Bhat AH; Amin S; Anjum S; Reshi BA; Zargar MA; Masood A; Ganie SA
    Curr Cancer Drug Targets; 2019; 19(6):430-448. PubMed ID: 30073927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass spectrometry-based clinical proteomics: head-and-neck cancer biomarkers and drug-targets discovery.
    Matta A; Ralhan R; DeSouza LV; Siu KW
    Mass Spectrom Rev; 2010; 29(6):945-61. PubMed ID: 20945361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic Level Changes on Treatment in MCF-7/DDP Breast Cancer Drug- Resistant Cells.
    Jin G; Wang K; Liu Y; Liu X; Zhang X; Zhang H
    Anticancer Agents Med Chem; 2020; 20(6):687-699. PubMed ID: 32053082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S1PR1 as a Novel Promising Therapeutic Target in Cancer Therapy.
    Rostami N; Nikkhoo A; Ajjoolabady A; Azizi G; Hojjat-Farsangi M; Ghalamfarsa G; Yousefi B; Yousefi M; Jadidi-Niaragh F
    Mol Diagn Ther; 2019 Aug; 23(4):467-487. PubMed ID: 31115798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of salivary proteomics in drug discovery and development: a focus on cancer drug discovery.
    Hu S; Yen Y; Ann D; Wong DT
    Drug Discov Today; 2007 Nov; 12(21-22):911-6. PubMed ID: 17993408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Development of anti-cancer drugs mediated by apoptosis and autophagy].
    Shimizu S
    Nihon Rinsho; 2015 Aug; 73(8):1302-7. PubMed ID: 26281682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticancer metallodrug research analytically painting the "omics" picture--current developments and future trends.
    Groessl M; Hartinger CG
    Anal Bioanal Chem; 2013 Feb; 405(6):1791-808. PubMed ID: 23070042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical aspects for survivin: a crucial molecule for targeting drug-resistant cancers.
    Singh N; Krishnakumar S; Kanwar RK; Cheung CH; Kanwar JR
    Drug Discov Today; 2015 May; 20(5):578-87. PubMed ID: 25433305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.