BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2418784)

  • 21. Escherichia coli tRNA 2-selenouridine synthase (SelU) converts S2U-RNA to Se2U-RNA via S-geranylated-intermediate.
    Sierant M; Leszczynska G; Sadowska K; Komar P; Radzikowska-Cieciura E; Sochacka E; Nawrot B
    FEBS Lett; 2018 Jul; 592(13):2248-2258. PubMed ID: 29862510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of modified nucleosides in tRNA: effect of modification of the 2-thiouridine derivative located at the 5'-end of the anticodon of yeast transfer RNA Lys2.
    Sen GC; Ghosh HP
    Nucleic Acids Res; 1976 Mar; 3(3):523-35. PubMed ID: 775440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. S-Geranyl-2-thiouridine wobble nucleosides of bacterial tRNAs; chemical and enzymatic synthesis of S-geranylated-RNAs and their physicochemical characterization.
    Sierant M; Leszczynska G; Sadowska K; Dziergowska A; Rozanski M; Sochacka E; Nawrot B
    Nucleic Acids Res; 2016 Dec; 44(22):10986-10998. PubMed ID: 27566149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of the anticodon region of Escherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl-tRNA synthetase. Alteration of the 2-thiouridine derivatives located in the anticodon of the tRNAs by BrCN or sulfur deprivation.
    Seno T; Agris PF; Söll D
    Biochim Biophys Acta; 1974 May; 349(3):328-38. PubMed ID: 4366808
    [No Abstract]   [Full Text] [Related]  

  • 25. Effect of modified nucleotides on Escherichia coli tRNAGlu structure and on its aminoacylation by glutamyl-tRNA synthetase. Predominant and distinct roles of the mnm5 and s2 modifications of U34.
    Madore E; Florentz C; Giegé R; Sekine S; Yokoyama S; Lapointe J
    Eur J Biochem; 1999 Dec; 266(3):1128-35. PubMed ID: 10583410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clostridium sticklandii glycine reductase selenoprotein A gene: cloning, sequencing, and expression in Escherichia coli.
    Garcia GE; Stadtman TC
    J Bacteriol; 1992 Nov; 174(22):7080-9. PubMed ID: 1429431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preferences of AAA/AAG codon recognition by modified nucleosides, τm
    Sonawane KD; Kamble AS; Fandilolu PM
    J Biomol Struct Dyn; 2018 Dec; 36(16):4182-4196. PubMed ID: 29243556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleic Acid Crystallography via Direct Selenium Derivatization: RNAs Modified with Se-Nucleobases.
    Sun H; Jiang S; Huang Z
    Methods Mol Biol; 2016; 1320():193-204. PubMed ID: 26227044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Covalent cross-linking of transfer ribonucleic acid to the ribosomal P site. Mechanism and site of reaction in transfer ribonucleic acid.
    Ofengand J; Liou R; Kohut J; Schwartz I; Zimmermann RA
    Biochemistry; 1979 Oct; 18(20):4322-32. PubMed ID: 385051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosynthesis of selenium-modified tRNAs in Methanococcus vannielii.
    Politino M; Tsai L; Veres Z; Stadtman TC
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6345-8. PubMed ID: 2143584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anticodon domain modifications contribute order to tRNA for ribosome-mediated codon binding.
    Vendeix FA; Dziergowska A; Gustilo EM; Graham WD; Sproat B; Malkiewicz A; Agris PF
    Biochemistry; 2008 Jun; 47(23):6117-29. PubMed ID: 18473483
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA.
    Auxilien S; Crain PF; Trewyn RW; Grosjean H
    J Mol Biol; 1996 Oct; 262(4):437-58. PubMed ID: 8893855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Affinity modification of Escherichia coli ribosomes near the acceptor tRNA-binding site].
    Babkina GT; Karpova GG; Matasova NB
    Mol Biol (Mosk); 1984; 18(5):1287-96. PubMed ID: 6209548
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of transfer ribonucleic acid dimer formation on polyphenylalanine biosynthesis.
    Miller DL; Yamane T; Hopfield JJ
    Biochemistry; 1981 Sep; 20(19):5457-61. PubMed ID: 7028105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatographic evidence that the AAA-coding isoacceptor of lysine tRNA primes DNA synthesis in murine mammary tumor virus.
    Waters LC
    Virology; 1981 Jul; 112(2):766-9. PubMed ID: 6266151
    [No Abstract]   [Full Text] [Related]  

  • 36. Proofreading of the codon-anticodon interaction on ribosomes.
    Thompson RC; Stone PJ
    Proc Natl Acad Sci U S A; 1977 Jan; 74(1):198-202. PubMed ID: 319457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selenium-containing transfer RNAs.
    Ching WM; Tsai L; Wittwer AJ
    Curr Top Cell Regul; 1985; 27():497-507. PubMed ID: 4092497
    [No Abstract]   [Full Text] [Related]  

  • 38. Formation of the chlorophyll precursor delta-aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNAGlu species.
    O'Neill GP; Peterson DM; Schön A; Chen MW; Söll D
    J Bacteriol; 1988 Sep; 170(9):3810-6. PubMed ID: 2900830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monoselenophosphate: synthesis, characterization, and identity with the prokaryotic biological selenium donor, compound SePX.
    Glass RS; Singh WP; Jung W; Veres Z; Scholz TD; Stadtman TC
    Biochemistry; 1993 Nov; 32(47):12555-9. PubMed ID: 8251472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transfer RNA Bound to MnmH Protein Is Enriched with Geranylated tRNA--A Possible Intermediate in Its Selenation?
    Jäger G; Chen P; Björk GR
    PLoS One; 2016; 11(4):e0153488. PubMed ID: 27073879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.