These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24187929)

  • 1. Decreased aperture surface energy enhances electrical, mechanical, and temporal stability of suspended lipid membranes.
    Bright LK; Baker CA; Agasid MT; Ma L; Aspinwall CA
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11918-26. PubMed ID: 24187929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methacrylate Polymer Scaffolding Enhances the Stability of Suspended Lipid Bilayers for Ion Channel Recordings and Biosensor Development.
    Bright LK; Baker CA; Bränström R; Saavedra SS; Aspinwall CA
    ACS Biomater Sci Eng; 2015; 1(10):955-963. PubMed ID: 26925461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphiphobic Septa Enhance the Mechanical Stability of Free-Standing Bilayer Lipid Membranes.
    Yamaura D; Tadaki D; Araki S; Yoshida M; Arata K; Ohori T; Ishibashi KI; Kato M; Ma T; Miyata R; Yamamoto H; Tero R; Sakuraba M; Ogino T; Niwano M; Hirano-Iwata A
    Langmuir; 2018 May; 34(19):5615-5622. PubMed ID: 29664647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Modification of Glass/PDMS Microfluidic Valve Assemblies Enhances Valve Electrical Resistance.
    Wang X; Agasid MT; Baker CA; Aspinwall CA
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34463-34470. PubMed ID: 31496217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymerized planar suspended lipid bilayers for single ion channel recordings: comparison of several dienoyl lipids.
    Heitz BA; Xu J; Jones IW; Keogh JP; Comi TJ; Hall HK; Aspinwall CA; Saavedra SS
    Langmuir; 2011 Mar; 27(5):1882-90. PubMed ID: 21226498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single ion-channel recordings using glass nanopore membranes.
    White RJ; Ervin EN; Yang T; Chen X; Daniel S; Cremer PS; White HS
    J Am Chem Soc; 2007 Sep; 129(38):11766-75. PubMed ID: 17784758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractional polymerization of a suspended planar bilayer creates a fluid, highly stable membrane for ion channel recordings.
    Heitz BA; Jones IW; Hall HK; Aspinwall CA; Saavedra SS
    J Am Chem Soc; 2010 May; 132(20):7086-93. PubMed ID: 20441163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced long-term stability for single ion channel recordings using suspended poly(lipid) bilayers.
    Heitz BA; Xu J; Hall HK; Aspinwall CA; Saavedra SS
    J Am Chem Soc; 2009 May; 131(19):6662-3. PubMed ID: 19397328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-Standing Lipid Bilayers Based on Nanopore Array and Ion Channel Formation.
    Tan S; Zhang L; Yu L; Xu L
    J Nanosci Nanotechnol; 2019 Nov; 19(11):7149-7155. PubMed ID: 31039869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of H2TOEtPyP4 porphyrin on the stability and conductivity of bilayer lipid membranes.
    Torosyan A; Arakelyan V
    Eur Biophys J; 2015 Dec; 44(8):745-50. PubMed ID: 26307365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid bilayer-based sensors and biomolecular electronics.
    Tien HT; Salamon Z; Ottova A
    Crit Rev Biomed Eng; 1991; 18(5):323-40. PubMed ID: 2036800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bilayer lipid membranes for flow injection monitoring of acetylcholine, urea, and penicillin.
    Nikolelis DP; Siontorou CG
    Anal Chem; 1995 Mar; 67(5):936-44. PubMed ID: 7762829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated lipid membrane formation using a polydimethylsiloxane film for ion channel measurements.
    Ryu H; Choi S; Park J; Yoo YE; Yoon JS; Seo YH; Kim YR; Kim SM; Jeon TJ
    Anal Chem; 2014 Sep; 86(18):8910-5. PubMed ID: 25123602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photolithographic fabrication of microapertures with well-defined, three-dimensional geometries for suspended lipid membrane studies.
    Baker CA; Bright LK; Aspinwall CA
    Anal Chem; 2013 Oct; 85(19):9078-86. PubMed ID: 23987300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical impedance spectroscopy and atomic force microscopic studies of electrical and mechanical properties of nano-black lipid membranes and size dependence.
    Zhu ZW; Wang Y; Zhang X; Sun CF; Li MG; Yan JW; Mao BW
    Langmuir; 2012 Oct; 28(41):14739-46. PubMed ID: 22985346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid bilayer microarray for parallel recording of transmembrane ion currents.
    Le Pioufle B; Suzuki H; Tabata KV; Noji H; Takeuchi S
    Anal Chem; 2008 Jan; 80(1):328-32. PubMed ID: 18001126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of Na(+),K(+)-ATP-ase into the thiolipid biomimetic assemblies via the fusion of proteoliposomes.
    Zebrowska A; Krysiński P
    Langmuir; 2004 Dec; 20(25):11127-33. PubMed ID: 15568867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Temporal Resolution with Ion Channel-Functionalized Sensors Using a Conductance-Based Measurement Protocol.
    Agasid MT; Comi TJ; Saavedra SS; Aspinwall CA
    Anal Chem; 2017 Jan; 89(2):1315-1322. PubMed ID: 27981836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkylated glass partition allows formation of solvent-free lipid bilayer by Montal-Mueller technique.
    Batishchev OV; Indenbom AV
    Bioelectrochemistry; 2008 Nov; 74(1):22-5. PubMed ID: 18378502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable lipid bilayers based on micro- and nano-fabrication as a platform for recording ion-channel activities.
    Hirano-Iwata A; Oshima A; Mozumi H; Kimura Y; Niwano M
    Anal Sci; 2012; 28(11):1049-57. PubMed ID: 23149604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.