These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 24187934)
1. Shape-memory bionanocomposites based on chitin nanocrystals and thermoplastic polyurethane with a highly crystalline soft segment. Saralegi A; Fernandes SC; Alonso-Varona A; Palomares T; Foster EJ; Weder C; Eceiza A; Corcuera MA Biomacromolecules; 2013 Dec; 14(12):4475-82. PubMed ID: 24187934 [TBL] [Abstract][Full Text] [Related]
2. Biocompatible thermo- and magneto-responsive shape-memory polyurethane bionanocomposites. Calvo-Correas T; Shirole A; Crippa F; Fink A; Weder C; Corcuera MA; Eceiza A Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():658-668. PubMed ID: 30678953 [TBL] [Abstract][Full Text] [Related]
3. Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content. Meng Q; Hu J; Zhu Y J Biomater Sci Polym Ed; 2008; 19(11):1437-54. PubMed ID: 18973722 [TBL] [Abstract][Full Text] [Related]
4. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Naseri N; Algan C; Jacobs V; John M; Oksman K; Mathew AP Carbohydr Polym; 2014 Aug; 109():7-15. PubMed ID: 24815394 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of in vitro cytotoxicity and properties of polydimethylsiloxane-based polyurethane/crystalline nanocellulose bionanocomposites. Khadivi P; Salami-Kalajahi M; Roghani-Mamaqani H J Biomed Mater Res A; 2019 Aug; 107(8):1771-1778. PubMed ID: 30983129 [TBL] [Abstract][Full Text] [Related]
7. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310 [TBL] [Abstract][Full Text] [Related]
8. A low-temperature thermoplastic anti-bacterial medical orthotic material made of shape memory polyurethane ionomer: influence of ionic group. Meng Q; Hu J; Liu B; Zhu Y J Biomater Sci Polym Ed; 2009; 20(2):199-218. PubMed ID: 19154670 [TBL] [Abstract][Full Text] [Related]
9. Physicochemical and biological characterization of nanocomposites made of segmented polyurethanes and Cloisite 30B. Moo-Espinosa JI; Solís-Correa R; Vargas-Coronado R; Cervantes-Uc JM; Cauich-Rodríguez JV; Owen PQ; Aguilar-Santamaría MA; Gutiérrez MF; del Barrio JS J Biomater Appl; 2013 Jul; 28(1):38-48. PubMed ID: 23812945 [TBL] [Abstract][Full Text] [Related]
10. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Cao X; Dong H; Li CM Biomacromolecules; 2007 Mar; 8(3):899-904. PubMed ID: 17315923 [TBL] [Abstract][Full Text] [Related]
11. Structure and mechanical properties of new biomass-based nanocomposite: castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal. Lin S; Huang J; Chang PR; Wei S; Xu Y; Zhang Q Carbohydr Polym; 2013 Jun; 95(1):91-9. PubMed ID: 23618244 [TBL] [Abstract][Full Text] [Related]
12. The role of reactive silicates on the structure/property relationships and cell response evaluation in polyurethane nanocomposites. Rueda L; Garcia I; Palomares T; Alonso-Varona A; Mondragon I; Corcuera M; Eceiza A J Biomed Mater Res A; 2011 Jun; 97(4):480-9. PubMed ID: 21495170 [TBL] [Abstract][Full Text] [Related]
13. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites. Zia KM; Zuber M; Barikani M; Hussain R; Jamil T; Anjum S Int J Biol Macromol; 2011 Dec; 49(5):1131-6. PubMed ID: 21945787 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Guelcher SA; Gallagher KM; Didier JE; Klinedinst DB; Doctor JS; Goldstein AS; Wilkes GL; Beckman EJ; Hollinger JO Acta Biomater; 2005 Jul; 1(4):471-84. PubMed ID: 16701828 [TBL] [Abstract][Full Text] [Related]
15. Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Ajili SH; Ebrahimi NG; Soleimani M Acta Biomater; 2009 Jun; 5(5):1519-30. PubMed ID: 19249261 [TBL] [Abstract][Full Text] [Related]
16. Effects of temperature changes and stress loading on the mechanical and shape memory properties of thermoplastic materials with different glass transition behaviours and crystal structures. Iijima M; Kohda N; Kawaguchi K; Muguruma T; Ohta M; Naganishi A; Murakami T; Mizoguchi I Eur J Orthod; 2015 Dec; 37(6):665-70. PubMed ID: 25788333 [TBL] [Abstract][Full Text] [Related]
17. Surface characteristics of chitin-based shape memory polyurethane elastomers. Zia KM; Zuber M; Barikani M; Bhatti IA; Khan MB Colloids Surf B Biointerfaces; 2009 Sep; 72(2):248-52. PubMed ID: 19427176 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the effects of polycaprolactone molecular weight and graphene content on crystallinity, mechanical properties and shape memory behavior of polyurethane/graphene nanocomposites. Babaie A; Rezaei M; Sofla RLM J Mech Behav Biomed Mater; 2019 Aug; 96():53-68. PubMed ID: 31029995 [TBL] [Abstract][Full Text] [Related]
19. Biodegradable shape-memory polymers using polycaprolactone and isosorbide based polyurethane blends. Joo YS; Cha JR; Gong MS Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():426-435. PubMed ID: 30033273 [TBL] [Abstract][Full Text] [Related]
20. Post-Crosslinked Polyurethanes with Excellent Shape Memory Property. Liu W; Zhao Y; Wang R; Li J; Li J; Luo F; Tan H; Fu Q Macromol Rapid Commun; 2017 Dec; 38(23):. PubMed ID: 29083102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]