These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24188120)

  • 1. Characterizing metabolic interactions in a clostridial co-culture for consolidated bioprocessing.
    Salimi F; Mahadevan R
    BMC Biotechnol; 2013 Nov; 13():95. PubMed ID: 24188120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing.
    Salimi F; Zhuang K; Mahadevan R
    Biotechnol J; 2010 Jul; 5(7):726-38. PubMed ID: 20665645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced biohydrogen production from corn stover by the combination of Clostridium cellulolyticum and hydrogen fermentation bacteria.
    Zhang SC; Lai QH; Lu Y; Liu ZD; Wang TM; Zhang C; Xing XH
    J Biosci Bioeng; 2016 Oct; 122(4):482-7. PubMed ID: 27150511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose.
    Higashide W; Li Y; Yang Y; Liao JC
    Appl Environ Microbiol; 2011 Apr; 77(8):2727-33. PubMed ID: 21378054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species.
    Ren Z; Ward TE; Logan BE; Regan JM
    J Appl Microbiol; 2007 Dec; 103(6):2258-66. PubMed ID: 18045409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biobutanol Production from Crystalline Cellulose through Consolidated Bioprocessing.
    Xin F; Dong W; Zhang W; Ma J; Jiang M
    Trends Biotechnol; 2019 Feb; 37(2):167-180. PubMed ID: 30224227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of Clostridium cellulolyticum ATCC 35319 under dialysis and co-culture conditions.
    Gehin A; Cailliez C; Petitdemange E; Benoit L
    Lett Appl Microbiol; 1996 Oct; 23(4):208-12. PubMed ID: 8987692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess.
    Wang Z; Cao G; Zheng J; Fu D; Song J; Zhang J; Zhao L; Yang Q
    Biotechnol Biofuels; 2015; 8():84. PubMed ID: 26089984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment.
    Desvaux M; Guedon E; Petitdemange H
    Microbiology (Reading); 2001 Jun; 147(Pt 6):1461-1471. PubMed ID: 11390677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose.
    Yang X; Xu M; Yang ST
    Metab Eng; 2015 Nov; 32():39-48. PubMed ID: 26365585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia.
    Desvaux M
    FEMS Microbiol Rev; 2005 Sep; 29(4):741-64. PubMed ID: 16102601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose.
    Gaida SM; Liedtke A; Jentges AH; Engels B; Jennewein S
    Microb Cell Fact; 2016 Jan; 15():6. PubMed ID: 26758196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Clostridium for improved solvent production: recent progress and perspective.
    Cheng C; Bao T; Yang ST
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5549-5566. PubMed ID: 31139901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon flux distribution and kinetics of cellulose fermentation in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium.
    Desvaux M; Guedon E; Petitdemange H
    J Bacteriol; 2001 Jan; 183(1):119-30. PubMed ID: 11114908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition.
    Luo H; Zeng Q; Han S; Wang Z; Dong Q; Bi Y; Zhao Y
    World J Microbiol Biotechnol; 2017 Apr; 33(4):76. PubMed ID: 28337710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum and Bacillus cereus.
    Wu P; Wang G; Wang G; Børresen BT; Liu H; Zhang J
    Microb Cell Fact; 2016 Jan; 15():8. PubMed ID: 26762531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clostridium cellulovorans metabolism of cellulose as studied by comparative proteomic approach.
    Usai G; Cirrincione S; Re A; Manfredi M; Pagnani A; Pessione E; Mazzoli R
    J Proteomics; 2020 Mar; 216():103667. PubMed ID: 31982546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture.
    Dusséaux S; Croux C; Soucaille P; Meynial-Salles I
    Metab Eng; 2013 Jul; 18():1-8. PubMed ID: 23541907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition.
    Luo H; Ge L; Zhang J; Zhao Y; Ding J; Li Z; He Z; Chen R; Shi Z
    PLoS One; 2015; 10(10):e0141160. PubMed ID: 26489085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. n-Butanol and ethanol production from cellulose by Clostridium cellulovorans overexpressing heterologous aldehyde/alcohol dehydrogenases.
    Bao T; Zhao J; Li J; Liu X; Yang ST
    Bioresour Technol; 2019 Aug; 285():121316. PubMed ID: 30959389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.