These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24188205)

  • 21. In Silico Estimation of Chemical Carcinogenicity with Binary and Ternary Classification Methods.
    Li X; Du Z; Wang J; Wu Z; Li W; Liu G; Shen X; Tang Y
    Mol Inform; 2015 Apr; 34(4):228-35. PubMed ID: 27490168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using open source computational tools for predicting human metabolic stability and additional absorption, distribution, metabolism, excretion, and toxicity properties.
    Gupta RR; Gifford EM; Liston T; Waller CL; Hohman M; Bunin BA; Ekins S
    Drug Metab Dispos; 2010 Nov; 38(11):2083-90. PubMed ID: 20693417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-scale similarity search profiling of ChEMBL compound data sets.
    Heikamp K; Bajorath J
    J Chem Inf Model; 2011 Aug; 51(8):1831-9. PubMed ID: 21728295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of descriptors and mini-fingerprints for the identification of molecules with similar activity.
    Xue L; Godden JW; Bajorath J
    J Chem Inf Comput Sci; 2000; 40(5):1227-34. PubMed ID: 11045818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and evaluation of a molecular fingerprint involving the transformation of property descriptor values into a binary classification scheme.
    Xue L; Godden JW; Stahura FL; Bajorath J
    J Chem Inf Comput Sci; 2003; 43(4):1151-7. PubMed ID: 12870906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method.
    Wei Y; Li W; Du T; Hong Z; Lin J
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparative study on the molecular descriptors for predicting drug-likeness of small molecules.
    Mishra H; Singh N; Lahiri T; Misra K
    Bioinformation; 2009 Jun; 3(9):384-8. PubMed ID: 19707563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NP-Scout: Machine Learning Approach for the Quantification and Visualization of the Natural Product-Likeness of Small Molecules.
    Chen Y; Stork C; Hirte S; Kirchmair J
    Biomolecules; 2019 Jan; 9(2):. PubMed ID: 30682850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Natural product-likeness score revisited: an open-source, open-data implementation.
    Jayaseelan KV; Moreno P; Truszkowski A; Ertl P; Steinbeck C
    BMC Bioinformatics; 2012 May; 13():106. PubMed ID: 22607271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Collection and preparation of molecular databases for virtual screening.
    Saxena AK; Prathipati P
    SAR QSAR Environ Res; 2006 Aug; 17(4):371-92. PubMed ID: 16920660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. kNNsim: k-nearest neighbors similarity with genetic algorithm features optimization enhances the prediction of activity classes for small molecules.
    Plewczynski D
    J Mol Model; 2009 Jun; 15(6):591-6. PubMed ID: 18663491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
    Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Silico Prediction of Drug-Induced Liver Injury Based on Ensemble Classifier Method.
    Wang Y; Xiao Q; Chen P; Wang B
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31443562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PreDTIs: prediction of drug-target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques.
    Mahmud SMH; Chen W; Liu Y; Awal MA; Ahmed K; Rahman MH; Moni MA
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33709119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selecting diversified compounds to build a tangible library for biological and biochemical assays.
    Gu Q; Xu J; Gu L
    Molecules; 2010 Jul; 15(7):5031-44. PubMed ID: 20657406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classification analysis of fatty acid synthase inhibitors using multialgorithms on topological descriptors and structural fingerprints.
    Singh S; Karthikeyan C; Moorthy NSHN
    Chem Biol Drug Des; 2023 Feb; 101(2):395-407. PubMed ID: 36065591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new ChEMBL dataset for the similarity-based target fishing engine FastTargetPred: Annotation of an exhaustive list of linear tetrapeptides.
    Tanwar S; Auberger P; Gillet G; DiPaola M; Tsaioun K; Villoutreix BO
    Data Brief; 2022 Jun; 42():108159. PubMed ID: 35496477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-objective Genetic Algorithm for De Novo Drug Design (MoGADdrug).
    Devi RV; Sathya SS; Coumar MS
    Curr Comput Aided Drug Des; 2021; 17(3):445-457. PubMed ID: 32562528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pharmacoprint: A Combination of a Pharmacophore Fingerprint and Artificial Intelligence as a Tool for Computer-Aided Drug Design.
    Warszycki D; Struski Ł; Śmieja M; Kafel R; Kurczab R
    J Chem Inf Model; 2021 Oct; 61(10):5054-5065. PubMed ID: 34547888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico approach for predicting toxicity of peptides and proteins.
    Gupta S; Kapoor P; Chaudhary K; Gautam A; Kumar R; ; Raghava GP
    PLoS One; 2013; 8(9):e73957. PubMed ID: 24058508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.