BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24188208)

  • 21. Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles.
    Niu J; Shin YJ; Son J; Lee Y; Ahn JH; Yang H
    Opt Express; 2012 Aug; 20(18):19690-6. PubMed ID: 23037021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remarkable photothermal effect of interband excitation on nanosecond laser-induced reshaping and size reduction of pseudospherical gold nanoparticles in aqueous solution.
    Werner D; Hashimoto S; Uwada T
    Langmuir; 2010 Jun; 26(12):9956-63. PubMed ID: 20210316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation.
    Bhat R; Sharanabasava VG; Deshpande R; Shetti U; Sanjeev G; Venkataraman A
    J Photochem Photobiol B; 2013 Aug; 125():63-9. PubMed ID: 23747539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic nanopowders for photothermal therapy of tumors.
    Khlebtsov BN; Panfilova EV; Terentyuk GS; Maksimova IL; Ivanov AV; Khlebtsov NG
    Langmuir; 2012 Jun; 28(24):8994-9002. PubMed ID: 22404289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy.
    Wu YN; Yang LX; Shi XY; Li IC; Biazik JM; Ratinac KR; Chen DH; Thordarson P; Shieh DB; Braet F
    Biomaterials; 2011 Jul; 32(20):4565-73. PubMed ID: 21458061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of phosphopeptides by localized surface plasma resonance of titania-coated gold nanoparticles immobilized on glass substrates.
    Lin HY; Chen CT; Chen YC
    Anal Chem; 2006 Oct; 78(19):6873-8. PubMed ID: 17007509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy.
    Luo YL; Shiao YS; Huang YF
    ACS Nano; 2011 Oct; 5(10):7796-804. PubMed ID: 21942498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses.
    Yang YY; Scrinzi A; Husakou A; Li QG; Stebbings SL; Süßmann F; Yu HJ; Kim S; Rühl E; Herrmann J; Lin XC; Kling MF
    Opt Express; 2013 Jan; 21(2):2195-205. PubMed ID: 23389200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth and fragmentation of silver nanoparticles in their synthesis with a fs laser and CW light by photo-sensitization with benzophenone.
    Eustis S; Krylova G; Eremenko A; Smirnova N; Schill AW; El-Sayed M
    Photochem Photobiol Sci; 2005 Jan; 4(1):154-9. PubMed ID: 15616707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gold Nanoparticles Enhance the Anticancer Activity of Gallic Acid against Cholangiocarcinoma Cell Lines.
    Rattanata N; Daduang S; Wongwattanakul M; Leelayuwat C; Limpaiboon T; Lekphrom R; Sandee A; Boonsiri P; Chio-Srichan S; Daduang J
    Asian Pac J Cancer Prev; 2015; 16(16):7143-7. PubMed ID: 26514503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape.
    Lu L; Ai K; Ozaki Y
    Langmuir; 2008 Feb; 24(3):1058-63. PubMed ID: 18177060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cysteine-capped gold nanoparticles suppress aggregation of proteins exposed to heat stress.
    Luthuli SD; Chili MM; Revaprasadu N; Shonhai A
    IUBMB Life; 2013 May; 65(5):454-61. PubMed ID: 23436466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer.
    Patra CR; Bhattacharya R; Mukhopadhyay D; Mukherjee P
    Adv Drug Deliv Rev; 2010 Mar; 62(3):346-61. PubMed ID: 19914317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glycation-assisted synthesized gold nanoparticles inhibit growth of bone cancer cells.
    Rahim M; Iram S; Khan MS; Khan MS; Shukla AR; Srivastava AK; Ahmad S
    Colloids Surf B Biointerfaces; 2014 May; 117():473-9. PubMed ID: 24368207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids.
    Aryal S; Remant BK; Narayan B; Kim CK; Kim HY
    J Colloid Interface Sci; 2006 Jul; 299(1):191-7. PubMed ID: 16499918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective photothermal efficiency of citrate capped gold nanoparticles for destruction of cancer cells.
    Raji V; Kumar J; Rejiya CS; Vibin M; Shenoi VN; Abraham A
    Exp Cell Res; 2011 Aug; 317(14):2052-8. PubMed ID: 21565190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The IP₆ micelle-stabilized small Ag cluster for synthesizing Ag-Au alloy nanoparticles and the tunable surface plasmon resonance effect.
    Wang N; Wen Y; Wang Y; Zhang R; Chen X; Ling B; Huan S; Yang H
    Nanotechnology; 2012 Apr; 23(14):145702. PubMed ID: 22434016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro outlook of gold nanoparticles in photo-thermal therapy: a literature review.
    Norouzi H; Khoshgard K; Akbarzadeh F
    Lasers Med Sci; 2018 May; 33(4):917-926. PubMed ID: 29492712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance.
    Li X; Tamada K; Baba A; Knoll W; Hara M
    J Phys Chem B; 2006 Aug; 110(32):15755-62. PubMed ID: 16898722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution.
    Peng Z; Spliethoff B; Tesche B; Walther T; Kleinermanns K
    J Phys Chem B; 2006 Feb; 110(6):2549-54. PubMed ID: 16471854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.