BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 24188282)

  • 21. Identification of local- and habitat-dependent selection: scanning functionally important genes in nine-spined sticklebacks (Pungitius pungitius).
    Shikano T; Ramadevi J; Merilä J
    Mol Biol Evol; 2010 Dec; 27(12):2775-89. PubMed ID: 20591843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide patterns of standing genetic variation in a marine population of three-spined sticklebacks.
    Feulner PG; Chain FJ; Panchal M; Eizaguirre C; Kalbe M; Lenz TL; Mundry M; Samonte IE; Stoll M; Milinski M; Reusch TB; Bornberg-Bauer E
    Mol Ecol; 2013 Feb; 22(3):635-49. PubMed ID: 22747593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative genomics and evolutionary diversification of the duplicated fabp6a and fabp6b genes in medaka and three-spined stickleback.
    Parmar MB; Venkatachalam AB; Wright JM
    Comp Biochem Physiol Part D Genomics Proteomics; 2012 Dec; 7(4):311-21. PubMed ID: 23123309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic relationships among marine and freshwater populations of the European three-spined stickleback (Gasterosteus aculeatus) revealed by microsatellites.
    Mäkinen HS; Cano JM; Merilä J
    Mol Ecol; 2006 May; 15(6):1519-34. PubMed ID: 16629808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parallel selection on gene copy number variations through evolution of three-spined stickleback genomes.
    Hirase S; Ozaki H; Iwasaki W
    BMC Genomics; 2014 Aug; 15(1):735. PubMed ID: 25168270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative evolutionary genomics of medaka and three-spined stickleback fabp2a and fabp2b genes with fabp2 of zebrafish.
    Parmar MB; Wright JM
    Genome; 2013 Jan; 56(1):27-37. PubMed ID: 23379336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intraspecific divergence in the lateral line system in the nine-spined stickleback (Pungitius pungitius).
    Trokovic N; Herczeg G; McCairns RJ; Ab Ghani NI; Merilä J
    J Evol Biol; 2011 Jul; 24(7):1546-58. PubMed ID: 21545426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contrasting hybridization rates between sympatric three-spined sticklebacks highlight the fragility of reproductive barriers between evolutionarily young species.
    Gow JL; Peichel CL; Taylor EB
    Mol Ecol; 2006 Mar; 15(3):739-52. PubMed ID: 16499699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive and non-adaptive divergence in a common landscape.
    Raeymaekers JAM; Chaturvedi A; Hablützel PI; Verdonck I; Hellemans B; Maes GE; De Meester L; Volckaert FAM
    Nat Commun; 2017 Aug; 8(1):267. PubMed ID: 28814718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of novel microRNA genes in freshwater and marine ecotypes of the three-spined stickleback (Gasterosteus aculeatus).
    Rastorguev SM; Nedoluzhko AV; Sharko FS; Boulygina ES; Sokolov AS; Gruzdeva NM; Skryabin KG; Prokhortchouk EB
    Mol Ecol Resour; 2016 Nov; 16(6):1491-1498. PubMed ID: 27238497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Swimming behaviour in two ecologically similar three-spined (Gasterosteus aculeatus L.) and nine-spined sticklebacks (Pungitius pungitius L.): a comparative approach for modelling the toxicity of metal mixtures.
    Makaras T; Stankevičiūtė M
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):14479-14496. PubMed ID: 34617211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward conservation of genetic and phenotypic diversity in Japanese sticklebacks.
    Kitano J; Mori S
    Genes Genet Syst; 2016 Oct; 91(2):77-84. PubMed ID: 27301281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RSCA genotyping of MHC for high-throughput evolutionary studies in the model organism three-spined stickleback Gasterosteus aculeatus.
    Lenz TL; Eizaguirre C; Becker S; Reusch TB
    BMC Evol Biol; 2009 Mar; 9():57. PubMed ID: 19291291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic parallelism and lack thereof in contrasting systems of three-spined sticklebacks.
    Liu S; Ferchaud AL; Grønkjaer P; Nygaard R; Hansen MM
    Mol Ecol; 2018 Dec; 27(23):4725-4743. PubMed ID: 29972880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phylogeography and genetic structuring of European nine-spined sticklebacks (Pungitius pungitius)-mitochondrial DNA evidence.
    Teacher AG; Shikano T; Karjalainen ME; Merilä J
    PLoS One; 2011 May; 6(5):e19476. PubMed ID: 21589917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of gigantism in nine-spined sticklebacks.
    Herczeg G; Gonda A; Merilä J
    Evolution; 2009 Dec; 63(12):3190-200. PubMed ID: 19624722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporal stability of genetic variability and differentiation in the three-spined stickleback (Gasterosteus aculeatus).
    DeFaveri J; Merilä J
    PLoS One; 2015; 10(4):e0123891. PubMed ID: 25853707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-parallel divergence across freshwater and marine three-spined stickleback Gasterosteus aculeatus populations.
    Pujolar JM; Ferchaud AL; Bekkevold D; Hansen MM
    J Fish Biol; 2017 Jul; 91(1):175-194. PubMed ID: 28516498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The evolutionary ecology of dwarfism in three-spined sticklebacks.
    MacColl AD; El Nagar A; de Roij J
    J Anim Ecol; 2013 May; 82(3):642-52. PubMed ID: 23237226
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological differentiation among nine-spined stickleback populations: effects of copper exposure.
    Waser W; Sahoo TP; Herczeg G; Merilä J; Nikinmaa M
    Aquat Toxicol; 2010 Jun; 98(2):188-95. PubMed ID: 20207028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.