BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

600 related articles for article (PubMed ID: 24188428)

  • 1. Hydrolysis of flavanone glycosides by β-glucosidase from Pyrococcus furiosus and its application to the production of flavanone aglycones from citrus extracts.
    Shin KC; Nam HK; Oh DK
    J Agric Food Chem; 2013 Nov; 61(47):11532-40. PubMed ID: 24188428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolysis of flavanone glycosides and degradation of the corresponding aglycones from dried immature Citrus fruit by human fecal flora in vitro.
    Wang X; Sakurai T; Chen X; Sun H; Wang Z; Sun Q; Sun W; Cao H
    Planta Med; 2008 Nov; 74(14):1751-5. PubMed ID: 18975261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus.
    Yeom SJ; Kim BN; Kim YS; Oh DK
    J Agric Food Chem; 2012 Feb; 60(6):1535-41. PubMed ID: 22251001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects.
    Kanaze FI; Bounartzi MI; Georgarakis M; Niopas I
    Eur J Clin Nutr; 2007 Apr; 61(4):472-7. PubMed ID: 17047689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective effects of fermented Citrus unshiu peel extract against ultraviolet-A-induced photoageing in human dermal fibrobolasts.
    Bae JT; Ko HJ; Kim GB; Pyo HB; Lee GS
    Phytother Res; 2012 Dec; 26(12):1851-6. PubMed ID: 22422675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of aglycon protopanaxadiol via compound K by a thermostable β-glycosidase from Pyrococcus furiosus.
    Yoo MH; Yeom SJ; Park CS; Lee KW; Oh DK
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1019-28. PubMed ID: 21052989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the interaction for three Citrus flavonoids and α-amylase by surface plasmon resonance.
    Liu X; Luo F; Li P; She Y; Gao W
    Food Res Int; 2017 Jul; 97():1-6. PubMed ID: 28578029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New potent antioxidative hydroxyflavanones produced with Aspergillus saitoi from flavanone glycoside in citrus fruit.
    Miyake Y; Minato K; Fukumoto S; Yamamoto K; Oya-Ito T; Kawakishi S; Osawa T
    Biosci Biotechnol Biochem; 2003 Jul; 67(7):1443-50. PubMed ID: 12913285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteria as source of diglycosidase activity: Actinoplanes missouriensis produces 6-O-α-L-rhamnosyl-β-D-glucosidase active on flavonoids.
    Neher BD; Mazzaferro LS; Kotik M; Oyhenart J; Halada P; Křen V; Breccia JD
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3061-70. PubMed ID: 26549237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The antioxidant activity of citrus fruit peels].
    Kroyer G
    Z Ernahrungswiss; 1986 Mar; 25(1):63-9. PubMed ID: 3727631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phytochemical analysis and antioxidant activity assessment of orange peel (Citrus sinensis) cultivated in Greece-Crete indicates a new commercial source of hesperidin.
    Kanaze FI; Termentzi A; Gabrieli C; Niopas I; Georgarakis M; Kokkalou E
    Biomed Chromatogr; 2009 Mar; 23(3):239-49. PubMed ID: 18823075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hesperidin from Citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways.
    Banjerdpongchai R; Wudtiwai B; Khaw-On P; Rachakhom W; Duangnil N; Kongtawelert P
    Tumour Biol; 2016 Jan; 37(1):227-37. PubMed ID: 26194866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavanone absorption after naringin, hesperidin, and citrus administration.
    Ameer B; Weintraub RA; Johnson JV; Yost RA; Rouseff RL
    Clin Pharmacol Ther; 1996 Jul; 60(1):34-40. PubMed ID: 8689809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quercetin production from rutin by a thermostable β-rutinosidase from Pyrococcus furiosus.
    Nam HK; Hong SH; Shin KC; Oh DK
    Biotechnol Lett; 2012 Mar; 34(3):483-9. PubMed ID: 22052256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous separation of flavanone glycosides and polymethoxylated flavones in citrus juices using liquid chromatography.
    Mouly P; Gaydou EM; Auffray A
    J Chromatogr A; 1998 Mar; 800(2):171-9. PubMed ID: 9561761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A validated solid-phase extraction HPLC method for the simultaneous determination of the citrus flavanone aglycones hesperetin and naringenin in urine.
    Kanaze FI; Kokkalou E; Georgarakis M; Niopas I
    J Pharm Biomed Anal; 2004 Sep; 36(1):175-81. PubMed ID: 15351063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate preference of citrus naringenin rhamnosyltransferases and their application to flavonoid glycoside production in fission yeast.
    Ohashi T; Hasegawa Y; Misaki R; Fujiyama K
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):687-96. PubMed ID: 26433966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice.
    Erlund I; Meririnne E; Alfthan G; Aro A
    J Nutr; 2001 Feb; 131(2):235-41. PubMed ID: 11160539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavanone glycosides from Citrus junos and their anti-influenza virus activity.
    Kim HK; Jeon WK; Ko BS
    Planta Med; 2001 Aug; 67(6):548-9. PubMed ID: 11509977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of flavanone-7-O-glycoside diastereomers and analysis in citrus juices by multidimensional liquid chromatography coupled with mass spectrometry.
    Aturki Z; Brandi V; Sinibaldi M
    J Agric Food Chem; 2004 Aug; 52(17):5303-8. PubMed ID: 15315361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.