These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 24188625)
1. Effect of rhizodeposition on pyrene bioaccessibility and microbial structure in pyrene and pyrene-lead polluted soil. Wei J; Liu X; Wang Q; Wang C; Chen X; Li H Chemosphere; 2014 Feb; 97():92-7. PubMed ID: 24188625 [TBL] [Abstract][Full Text] [Related]
2. Influence of root components of celery on pyrene bioaccessibility, soil enzymes and microbial communities in pyrene and pyrene-diesel spiked soils. Wei J; Zhang X; Liu X; Liang X; Chen X Sci Total Environ; 2017 Dec; 599-600():50-57. PubMed ID: 28463701 [TBL] [Abstract][Full Text] [Related]
3. Pyrene biodegradation in an industrial soil exposed to simulated rhizodeposition: how does it affect functional microbial abundance? Meng L; Zhu YG Environ Sci Technol; 2011 Feb; 45(4):1579-85. PubMed ID: 21194198 [TBL] [Abstract][Full Text] [Related]
4. Degradation of ¹³C-labeled pyrene in soil-compost mixtures and fertilized soil. Adam IK; Miltner A; Kästner M Appl Microbiol Biotechnol; 2015 Nov; 99(22):9813-24. PubMed ID: 26216241 [TBL] [Abstract][Full Text] [Related]
5. Effect of plant-growth-promoting rhizobacteria on phytoremediation efficiency of Scirpus triqueter in pyrene-Ni co-contaminated soils. Zhang X; Su C; Liu X; Liu Z; Liang X; Zhang Y; Feng Y Chemosphere; 2020 Feb; 241():125027. PubMed ID: 31606002 [TBL] [Abstract][Full Text] [Related]
6. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231 [TBL] [Abstract][Full Text] [Related]
7. Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Wang MC; Chen YT; Chen SH; Chang Chien SW; Sunkara SV Chemosphere; 2012 Apr; 87(3):217-25. PubMed ID: 22245074 [TBL] [Abstract][Full Text] [Related]
8. Rhizospheric effects on the microbial community of e-waste-contaminated soils using phospholipid fatty acid and isoprenoid glycerol dialkyl glycerol tetraether analyses. Song M; Cheng Z; Luo C; Jiang L; Zhang D; Yin H; Zhang G Environ Sci Pollut Res Int; 2018 Apr; 25(10):9904-9914. PubMed ID: 29374376 [TBL] [Abstract][Full Text] [Related]
9. Impact of bioaccessible pyrene on the abundance of antibiotic resistance genes during Sphingobium sp.- and sophorolipid-enhanced bioremediation in soil. Sun M; Ye M; Wu J; Feng Y; Shen F; Tian D; Liu K; Hu F; Li H; Jiang X; Yang L; Kengara FO J Hazard Mater; 2015 Dec; 300():121-128. PubMed ID: 26164069 [TBL] [Abstract][Full Text] [Related]
10. Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. Chen X; Liu X; Zhang X; Cao L; Hu X J Hazard Mater; 2017 Mar; 325():319-326. PubMed ID: 27951500 [TBL] [Abstract][Full Text] [Related]
11. Influence of root-exudates concentration on pyrene degradation and soil microbial characteristics in pyrene contaminated soil. Xie XM; Liao M; Yang J; Chai JJ; Fang S; Wang RH Chemosphere; 2012 Aug; 88(10):1190-5. PubMed ID: 22520968 [TBL] [Abstract][Full Text] [Related]
12. Effect of simulated rhizodeposition on the relative abundance of polynuclear aromatic hydrocarbon catabolic genes in a contaminated soil. Da Silva ML; Kamath R; Alvarez PJ Environ Toxicol Chem; 2006 Feb; 25(2):386-91. PubMed ID: 16519298 [TBL] [Abstract][Full Text] [Related]
13. Pyrene removal and transformation by joint application of alfalfa and exogenous microorganisms and their influence on soil microbial community. Ye J; Yin H; Peng H; Bai J; Li Y Ecotoxicol Environ Saf; 2014 Dec; 110():129-35. PubMed ID: 25232990 [TBL] [Abstract][Full Text] [Related]
14. Effect of pyrene and cadmium on microbial activity and community structure in soil. Lu M; Xu K; Chen J Chemosphere; 2013 Apr; 91(4):491-7. PubMed ID: 23290945 [TBL] [Abstract][Full Text] [Related]
15. Interactions between selected PAHs and the microbial community in rhizosphere of a paddy soil. Su YH; Yang XY Sci Total Environ; 2009 Jan; 407(3):1027-34. PubMed ID: 19000632 [TBL] [Abstract][Full Text] [Related]
16. Influence of tea saponin on enhancing accessibility of pyrene and cadmium phytoremediated with Lolium multiflorum in co-contaminated soils. Wang Q; Liu X; Zhang X; Hou Y; Hu X; Liang X; Chen X Environ Sci Pollut Res Int; 2016 Mar; 23(6):5705-11. PubMed ID: 26581690 [TBL] [Abstract][Full Text] [Related]
17. Rhizosphere effect of Scirpus triqueter on soil microbial structure during phytoremediation of diesel-contaminated wetland. Wei J; Liu X; Zhang X; Chen X; Liu S; Chen L Environ Technol; 2014; 35(1-4):514-20. PubMed ID: 24600892 [TBL] [Abstract][Full Text] [Related]
18. [Characteristics of Soil Microbial Community Structure in the Rhizospheric Soil of Zuo YL; He XL; Wang SJ; Zhao LL Huan Jing Ke Xue; 2016 Jul; 37(7):2705-2713. PubMed ID: 29964482 [TBL] [Abstract][Full Text] [Related]
19. Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils. Hou Y; Liu X; Zhang X; Chen X; Tao K; Chen X; Liang X; He C Environ Sci Pollut Res Int; 2015 Nov; 22(22):17780-8. PubMed ID: 26154043 [TBL] [Abstract][Full Text] [Related]
20. A soil alteration index based on phospholipid fatty acids. Puglisi E; Nicelli M; Capri E; Trevisan M; Del Re AA Chemosphere; 2005 Dec; 61(11):1548-57. PubMed ID: 15990146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]