BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24188714)

  • 1. Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli.
    Li F; Wang Y; Gong K; Wang Q; Liang Q; Qi Q
    FEMS Microbiol Lett; 2014 Jan; 350(2):209-15. PubMed ID: 24188714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated Optimization of the In Vivo Heme Biosynthesis Pathway and the In Vitro Iron Concentration for 5-Aminolevulinate Production.
    Zhang J; Kang Z; Ding W; Chen J; Du G
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1252-62. PubMed ID: 26637361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli.
    Zhang J; Kang Z; Chen J; Du G
    Sci Rep; 2015 Feb; 5():8584. PubMed ID: 25716896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Deficiency of succinic dehydrogenase or succinyl-coA synthetase enhances the production of 5-aminolevulinic acid in recombinant Escherichia coli].
    Pu W; Chen J; Sun C; Chen N; Sun J; Zheng P; Ma Y
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1494-503. PubMed ID: 24432664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional differences between heme permeases: Serratia marcescens HemTUV permease exhibits a narrower substrate specificity (restricted to heme) than the Escherichia coli DppABCDF peptide-heme permease.
    Létoffé S; Delepelaire P; Wandersman C
    J Bacteriol; 2008 Mar; 190(6):1866-70. PubMed ID: 18178744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli.
    Massé E; Gottesman S
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4620-5. PubMed ID: 11917098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase.
    Shin JA; Kwon YD; Kwon OH; Lee HS; Kim P
    J Microbiol Biotechnol; 2007 Sep; 17(9):1579-84. PubMed ID: 18062242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient De Novo Biosynthesis of Heme by Membrane Engineering in
    Geng Z; Ge J; Cui W; Zhou H; Deng J; Xu B
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene.
    Choi HP; Lee YM; Yun CW; Sung HC
    J Microbiol Biotechnol; 2008 Jun; 18(6):1136-40. PubMed ID: 18600059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the hemA gene product and delta-aminolevulinic acid in regulation of Escherichia coli heme synthesis.
    Verderber E; Lucast LJ; Van Dehy JA; Cozart P; Etter JB; Best EA
    J Bacteriol; 1997 Jul; 179(14):4583-90. PubMed ID: 9226269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of culture conditions on production of 5-aminolevulinic acid by recombinant Escherichia coli.
    Lee DH; Jun WJ; Shin DH; Cho HY; Hong BS
    Biosci Biotechnol Biochem; 2005 Mar; 69(3):470-6. PubMed ID: 15784973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system.
    Fu W; Lin J; Cen P
    Bioresour Technol; 2008 Jul; 99(11):4864-70. PubMed ID: 17993272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. D-glucose enhanced 5-aminolevulinic acid production in recombinant Escherichia coli culture.
    Liu XX; Wang L; Wang YJ; Cai LL
    Appl Biochem Biotechnol; 2010 Mar; 160(3):822-30. PubMed ID: 19381488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable and Efficient Biosynthesis of 5-Aminolevulinic Acid Using Plasmid-Free Escherichia coli.
    Cui Z; Jiang Z; Zhang J; Zheng H; Jiang X; Gong K; Liang Q; Wang Q; Qi Q
    J Agric Food Chem; 2019 Feb; 67(5):1478-1483. PubMed ID: 30644739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Moo-Young M; Perry Chou C
    Biotechnol Bioeng; 2021 Jan; 118(1):30-42. PubMed ID: 32860420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron regulated outer membrane proteins of Escherichia coli: variations in expression due to the chelator used to restrict the availability of iron.
    Chart H; Buck M; Stevenson P; Griffiths E
    J Gen Microbiol; 1986 May; 132(5):1373-8. PubMed ID: 3095491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delta-aminolevulinate increases heme saturation and yield of human cystathionine beta-synthase expressed in Escherichia coli.
    Kery V; Elleder D; Kraus JP
    Arch Biochem Biophys; 1995 Jan; 316(1):24-9. PubMed ID: 7840623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of inducers on the production of 5-aminolevulinic acid by recombinant Escherichia coli.
    Xiaoxia L; Jianping L; Peilin C
    Prep Biochem Biotechnol; 2006; 36(3):223-33. PubMed ID: 16707333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli.
    Ding W; Weng H; Du G; Chen J; Kang Z
    J Ind Microbiol Biotechnol; 2017 Aug; 44(8):1127-1135. PubMed ID: 28382525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain.
    Fu W; Lin J; Cen P
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):777-82. PubMed ID: 17333171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.