BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 24188834)

  • 1. Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels.
    Köhnke T; Elder T; Theliander H; Ragauskas AJ
    Carbohydr Polym; 2014 Jan; 100():24-30. PubMed ID: 24188834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of cellulose nanocrystal reinforced nanocomposite hydrogel with self-healing properties.
    Liu X; Yang K; Chang M; Wang X; Ren J
    Carbohydr Polym; 2020 Jul; 240():116289. PubMed ID: 32475570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biopolymer nanocomposite films reinforced with nanocellulose whiskers.
    Saxena A; Foston M; Kassaee M; Elder TJ; Ragauskas AJ
    J Nanosci Nanotechnol; 2012 Jan; 12(1):218-26. PubMed ID: 22523969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity.
    Yang X; Bakaic E; Hoare T; Cranston ED
    Biomacromolecules; 2013 Dec; 14(12):4447-55. PubMed ID: 24206059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.
    De France KJ; Chan KJ; Cranston ED; Hoare T
    Biomacromolecules; 2016 Feb; 17(2):649-60. PubMed ID: 26741744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications.
    Domingues RM; Silva M; Gershovich P; Betta S; Babo P; Caridade SG; Mano JF; Motta A; Reis RL; Gomes ME
    Bioconjug Chem; 2015 Aug; 26(8):1571-81. PubMed ID: 26106949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels.
    Zhou C; Wu Q; Yue Y; Zhang Q
    J Colloid Interface Sci; 2011 Jan; 353(1):116-23. PubMed ID: 20932533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of N,N'-diallylaldardiamides as cross-linkers in xylan derivatives-based hydrogels.
    Pohjanlehto H; Setälä H; Kammiovirta K; Harlin A
    Carbohydr Res; 2011 Dec; 346(17):2736-45. PubMed ID: 22047746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanocrystal/amino-aldehyde biocomposite films.
    Nagy S; Csiszár E; Kun D; Koczka B
    Carbohydr Polym; 2018 Aug; 194():51-60. PubMed ID: 29801858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions.
    Lewis L; Derakhshandeh M; Hatzikiriakos SG; Hamad WY; MacLachlan MJ
    Biomacromolecules; 2016 Aug; 17(8):2747-54. PubMed ID: 27467200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers.
    Dash R; Foston M; Ragauskas AJ
    Carbohydr Polym; 2013 Jan; 91(2):638-45. PubMed ID: 23121958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state 13C NMR spectroscopy studies of xylans in the cell wall of Palmaria palmata (L. Kuntze, Rhodophyta).
    Lahaye M; Rondeau-Mouro C; Deniaud E; Buléon A
    Carbohydr Res; 2003 Jul; 338(15):1559-69. PubMed ID: 12860427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels.
    Yang J; Han CR; Duan JF; Xu F; Sun RC
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3199-207. PubMed ID: 23534336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding.
    Wang H; Li Z; Zuo M; Zeng X; Tang X; Sun Y; Lin L
    Carbohydr Polym; 2022 Mar; 280():119018. PubMed ID: 35027123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water.
    Karim Z; Mathew AP; Grahn M; Mouzon J; Oksman K
    Carbohydr Polym; 2014 Nov; 112():668-76. PubMed ID: 25129796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels.
    Shojaeiarani J; Bajwa D; Shirzadifar A
    Carbohydr Polym; 2019 Jul; 216():247-259. PubMed ID: 31047064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylan as limiting factor in enzymatic hydrolysis of nanocellulose.
    Penttilä PA; Várnai A; Pere J; Tammelin T; Salmén L; Siika-aho M; Viikari L; Serimaa R
    Bioresour Technol; 2013 Feb; 129():135-41. PubMed ID: 23238342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications.
    Du H; Liu W; Zhang M; Si C; Zhang X; Li B
    Carbohydr Polym; 2019 Apr; 209():130-144. PubMed ID: 30732792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous gelatin hydrogels: 1. Cryogenic formation and structure analysis.
    Vlierberghe SV; Cnudde V; Dubruel P; Masschaele B; Cosijns A; Paepe ID; Jacobs PJ; Hoorebeke LV; Remon JP; Schacht E
    Biomacromolecules; 2007 Feb; 8(2):331-7. PubMed ID: 17291055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.