BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24188840)

  • 1. Preparation of completely C6-carboxylated curdlan by catalytic oxidation with 4-acetamido-TEMPO.
    Watanabe E; Tamura N; Saito T; Habu N; Isogai A
    Carbohydr Polym; 2014 Jan; 100():74-9. PubMed ID: 24188840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and characterization of new families of polyglucuronic acids from TEMPO-NaOCl oxidation of curdlan.
    Delattre C; Rios L; Laroche C; Le NH; Lecerf D; Picton L; Berthon JY; Michaud P
    Int J Biol Macromol; 2009 Dec; 45(5):458-62. PubMed ID: 19716845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characteristics and antioxidant activities of different families of 4-acetamido-TEMPO-oxidised curdlan.
    Yan JK; Ma HL; Cai PF; Zhang HN; Zhang Q; Hu NZ; Feng XB; Wu JY
    Food Chem; 2014 Jan; 143():530-5. PubMed ID: 24054277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber.
    Isogai T; Saito T; Isogai A
    Biomacromolecules; 2010 Jun; 11(6):1593-9. PubMed ID: 20469944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO₂ systems in water at pH 4.8 or 6.8.
    Tanaka R; Saito T; Isogai A
    Int J Biol Macromol; 2012 Oct; 51(3):228-34. PubMed ID: 22617623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH dependent green synthesis of gold nanoparticles by completely C6-carboxylated curdlan under high temperature and various pH conditions.
    Qiu WY; Wang K; Wang YY; Ding ZC; Wu LX; Cai WD; Yan JK
    Int J Biol Macromol; 2018 Jan; 106():498-506. PubMed ID: 28797810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of (1→3)-β-polyglucuronic acid under various pH and temperature conditions.
    Watanabe E; Tamura N; Fujisawa S; Saito T; Habu N; Isogai A
    Carbohydr Polym; 2013 Sep; 97(2):413-20. PubMed ID: 23911465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant activities of a polyglucuronic acid sodium salt obtained from TEMPO-mediated oxidation of xanthan.
    Delattre C; Pierre G; Gardarin C; Traikia M; Elboutachfaiti R; Isogai A; Michaud P
    Carbohydr Polym; 2015 Feb; 116():34-41. PubMed ID: 25458270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pH-responsive carboxylic β-1,3-glucan polysaccharide for complexation with polymeric guests.
    Lien le TN; Shiraki T; Dawn A; Tsuchiya Y; Tokunaga D; Tamaru S; Enomoto N; Hojo J; Shinkai S
    Org Biomol Chem; 2011 Jun; 9(11):4266-75. PubMed ID: 21483941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of cellouronic acids and partially acetylated cellouronic acids by TEMPO/NaClO oxidation of water-soluble cellulose acetate.
    Gomez-Bujedo S; Fleury E; Vignon MR
    Biomacromolecules; 2004; 5(2):565-71. PubMed ID: 15003022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation pattern of curdlan with TEMPO-mediated system.
    Tang R; Hao J; Zong R; Wu F; Zeng Y; Zhang Z
    Carbohydr Polym; 2018 Apr; 186():9-16. PubMed ID: 29456013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidized curdlan activates dendritic cells and enhances antitumor immunity.
    Bao M; Ehexige E; Xu J; Ganbold T; Han S; Baigude H
    Carbohydr Polym; 2021 Jul; 264():117988. PubMed ID: 33910726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ultrasound on molecular properties, structure, chain conformation and degradation kinetics of carboxylic curdlan.
    Yan JK; Pei JJ; Ma HL; Wang ZB
    Carbohydr Polym; 2015 May; 121():64-70. PubMed ID: 25659672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TEMPO-mediated oxidation of maltodextrins and D-glucose: effect of pH on the selectivity and sequestering ability of the resulting polycarboxylates.
    Thaburet JF; Merbouh N; Ibert M; Marsais F; Queguiner G
    Carbohydr Res; 2001 Jan; 330(1):21-9. PubMed ID: 11217959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEMPO-mediated oxidation of cellulose III.
    da Silva Perez D; Montanari S; Vignon MR
    Biomacromolecules; 2003; 4(5):1417-25. PubMed ID: 12959614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of 1,4-linked α-D-glucuronans from starch with 4-acetamide-TEMPO/NaClO
    Hao J; Wu F; Tang R; Sun Y; Liu D; Zhang Z
    Int J Biol Macromol; 2020 May; 151():740-746. PubMed ID: 32088227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular weight distribution and functional group profiles of TEMPO-oxidized lyocell fibers.
    Milanovic J; Schiehser S; Milanovic P; Potthast A; Kostic M
    Carbohydr Polym; 2013 Oct; 98(1):444-50. PubMed ID: 23987366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyglucuronic acids prepared from α-(1 → 3)-glucan by TEMPO-catalytic oxidation.
    Chitbanyong K; Hou G; Shibata I; Takeuchi M; Kimura S; Isogai A
    Carbohydr Polym; 2024 Apr; 330():121813. PubMed ID: 38368084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitin nanocrystals prepared by TEMPO-mediated oxidation of alpha-chitin.
    Fan Y; Saito T; Isogai A
    Biomacromolecules; 2008 Jan; 9(1):192-8. PubMed ID: 18159931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions.
    Saito T; Hirota M; Tamura N; Kimura S; Fukuzumi H; Heux L; Isogai A
    Biomacromolecules; 2009 Jul; 10(7):1992-6. PubMed ID: 19445519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.