BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24188847)

  • 1. Adapting wood hydrolysate barriers to high humidity conditions.
    Yaich AI; Edlund U; Albertsson AC
    Carbohydr Polym; 2014 Jan; 100():135-42. PubMed ID: 24188847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wood hydrolysate barriers: performance controlled via selective recovery.
    Ibn Yaich A; Edlund U; Albertsson AC
    Biomacromolecules; 2012 Feb; 13(2):466-73. PubMed ID: 22181657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turning hardwood dissolving pulp polysaccharide residual material into barrier packaging.
    Saadatmand S; Edlund U; Albertsson AC; Danielsson S; Dahlman O; Karlström K
    Biomacromolecules; 2013 Aug; 14(8):2929-36. PubMed ID: 23862767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Barrier films from renewable forestry waste.
    Edlund U; Ryberg YZ; Albertsson AC
    Biomacromolecules; 2010 Sep; 11(9):2532-8. PubMed ID: 20681735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material properties of plasticized hardwood xylans for potential application as oxygen barrier films.
    Gröndahl M; Eriksson L; Gatenholm P
    Biomacromolecules; 2004; 5(4):1528-35. PubMed ID: 15244474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced formability and mechanical performance of wood hydrolysate films through reductive amination chain extension.
    Ibn Yaich A; Edlund U; Albertsson AC
    Carbohydr Polym; 2015 Mar; 117():346-354. PubMed ID: 25498645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability.
    Aulin C; Salazar-Alvarez G; Lindström T
    Nanoscale; 2012 Oct; 4(20):6622-8. PubMed ID: 22976562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prehydrolysis in softwood pulping produces a valuable biorefinery fraction for material utilization.
    Saadatmand S; Edlund U; Albertsson AC; Danielsson S; Dahlman O
    Environ Sci Technol; 2012 Aug; 46(15):8389-96. PubMed ID: 22768794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen permeability of films made from CO2-precipitated casein and modified casein.
    Tomasula PM; Yee WC; Parris N
    J Agric Food Chem; 2003 Jan; 51(3):634-9. PubMed ID: 12537434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innovative approaches for converting a wood hydrolysate to high-quality barrier coatings.
    Ryberg YZ; Edlund U; Albertsson AC
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7748-57. PubMed ID: 23915190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal and mechanical characterization of cellulose acetate phthalate films for pharmaceutical tablet coating: effect of humidity during measurements.
    Karlsson A; Singh SK
    Drug Dev Ind Pharm; 1998 Sep; 24(9):827-34. PubMed ID: 9876533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites.
    Wu CN; Saito T; Fujisawa S; Fukuzumi H; Isogai A
    Biomacromolecules; 2012 Jun; 13(6):1927-32. PubMed ID: 22568705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of clay concentration on morphology and properties of hydroxypropylmethylcellulose films.
    Mondal D; Bhowmick B; Mollick MM; Maity D; Mukhopadhyay A; Rana D; Chattopadhyay D
    Carbohydr Polym; 2013 Jul; 96(1):57-63. PubMed ID: 23688454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carboxymethylation of alkali extracted xylan for preparation of bio-based packaging films.
    Alekhina M; Mikkonen KS; Alén R; Tenkanen M; Sixta H
    Carbohydr Polym; 2014 Jan; 100():89-96. PubMed ID: 24188842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy.
    Fukuzumi H; Saito T; Iwamoto S; Kumamoto Y; Ohdaira T; Suzuki R; Isogai A
    Biomacromolecules; 2011 Nov; 12(11):4057-62. PubMed ID: 21995723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formaldehyde cross-linking of gliadin films: effects on mechanical and water barrier properties.
    Hernández-Muñoz P; López-Rubio A; Lagarón JM; Gavara R
    Biomacromolecules; 2004; 5(2):415-21. PubMed ID: 15003001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conceptual approach to renewable barrier film design based on wood hydrolysate.
    Zhu Ryberg YZ; Edlund U; Albertsson AC
    Biomacromolecules; 2011 Apr; 12(4):1355-62. PubMed ID: 21366288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fast method to produce strong NFC films as a platform for barrier and functional materials.
    Osterberg M; Vartiainen J; Lucenius J; Hippi U; Seppälä J; Serimaa R; Laine J
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4640-7. PubMed ID: 23635431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of high strength hot-water wood extract films with oxygen-barrier performance.
    Chen GG; Fu GQ; Wang XJ; Gong XD; Niu YS; Peng F; Yao CL; Sun RC
    Sci Rep; 2017 Jan; 7():41075. PubMed ID: 28112259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions.
    Yang Q; Fukuzumi H; Saito T; Isogai A; Zhang L
    Biomacromolecules; 2011 Jul; 12(7):2766-71. PubMed ID: 21657790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.