These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24189096)

  • 41. Identification of DNA-Binding Proteins Using Mixed Feature Representation Methods.
    Qu K; Han K; Wu S; Wang G; Wei L
    Molecules; 2017 Sep; 22(10):. PubMed ID: 28937647
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prediction of protein submitochondria locations based on data fusion of various features of sequences.
    Zakeri P; Moshiri B; Sadeghi M
    J Theor Biol; 2011 Jan; 269(1):208-16. PubMed ID: 21040732
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein fold recognition based on functional domain composition.
    Wang Q; Yan J; Li X
    Comput Biol Chem; 2014 Feb; 48():71-6. PubMed ID: 24412838
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of functionally diverse lipocalin proteins from sequence information using support vector machine.
    Pugalenthi G; Kandaswamy KK; Suganthan PN; Archunan G; Sowdhamini R
    Amino Acids; 2010 Aug; 39(3):777-83. PubMed ID: 20186553
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PredHydroxy: computational prediction of protein hydroxylation site locations based on the primary structure.
    Shi SP; Chen X; Xu HD; Qiu JD
    Mol Biosyst; 2015 Mar; 11(3):819-25. PubMed ID: 25534958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chaos game representation of protein sequences based on the detailed HP model and their multifractal and correlation analyses.
    Yu ZG; Anh V; Lau KS
    J Theor Biol; 2004 Feb; 226(3):341-8. PubMed ID: 14643648
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Support vector machines for predicting rRNA-, RNA-, and DNA-binding proteins from amino acid sequence.
    Cai YD; Lin SL
    Biochim Biophys Acta; 2003 May; 1648(1-2):127-33. PubMed ID: 12758155
    [TBL] [Abstract][Full Text] [Related]  

  • 49. GANN: genetic algorithm neural networks for the detection of conserved combinations of features in DNA.
    Beiko RG; Charlebois RL
    BMC Bioinformatics; 2005 Feb; 6():36. PubMed ID: 15725347
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition.
    Wang M; Yang J; Liu GP; Xu ZJ; Chou KC
    Protein Eng Des Sel; 2004 Jun; 17(6):509-16. PubMed ID: 15314209
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou's PseAAC.
    Han GS; Yu ZG; Anh V
    J Theor Biol; 2014 Mar; 344():31-9. PubMed ID: 24316387
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prediction by support vector machines and analysis by Z-score of poly-L-proline type II conformation based on local sequence.
    Wang ML; Yao H; Xu WB
    Comput Biol Chem; 2005 Apr; 29(2):95-100. PubMed ID: 15833437
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discriminating bioluminescent proteins by incorporating average chemical shift and evolutionary information into the general form of Chou's pseudo amino acid composition.
    Fan GL; Li QZ
    J Theor Biol; 2013 Oct; 334():45-51. PubMed ID: 23770403
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kernel-based machine learning protocol for predicting DNA-binding proteins.
    Bhardwaj N; Langlois RE; Zhao G; Lu H
    Nucleic Acids Res; 2005; 33(20):6486-93. PubMed ID: 16284202
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An accurate feature-based method for identifying DNA-binding residues on protein surfaces.
    Xiong Y; Liu J; Wei DQ
    Proteins; 2011 Feb; 79(2):509-17. PubMed ID: 21069866
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ranking Gene Ontology terms for predicting non-classical secretory proteins in eukaryotes and prokaryotes.
    Huang WL
    J Theor Biol; 2012 Nov; 312():105-13. PubMed ID: 22967952
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel method for prediction of protein interaction sites based on integrated RBF neural networks.
    Chen Y; Xu J; Yang B; Zhao Y; He W
    Comput Biol Med; 2012 Apr; 42(4):402-7. PubMed ID: 22226645
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting protein folding rates using the concept of Chou's pseudo amino acid composition.
    Guo J; Rao N; Liu G; Yang Y; Wang G
    J Comput Chem; 2011 Jun; 32(8):1612-7. PubMed ID: 21328402
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein Sequence Comparison and DNA-binding Protein Identification with Generalized PseAAC and Graphical Representation.
    Li C; Zhao J; Wang C; Yao Y
    Comb Chem High Throughput Screen; 2018; 21(2):100-110. PubMed ID: 29380690
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature.
    Wu J; Liu H; Duan X; Ding Y; Wu H; Bai Y; Sun X
    Bioinformatics; 2009 Jan; 25(1):30-5. PubMed ID: 19008251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.