These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2418916)

  • 1. Do the same hypothalamic neurons project to both amygdala and cerebellum?
    Dietrichs E; Haines DE
    Brain Res; 1986 Feb; 364(2):241-8. PubMed ID: 2418916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent axon collaterals to cerebellum and amygdala from neurons in the parabrachial nucleus, the nucleus locus coeruleus and some adjacent nuclei. A fluorescent double labelling study using rhodamine labelled latex microspheres and fast blue as retrograde tracers.
    Dietrichs E
    Anat Embryol (Berl); 1985; 172(3):375-82. PubMed ID: 4061875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collateral projections of neurons from the lower part of the spinal cord to anterior and posterior cerebellar termination areas. A retrograde fluorescent double labeling study in the cat.
    Xu Q; Grant G
    Exp Brain Res; 1988; 72(3):562-76. PubMed ID: 2466682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are hypothalamo-cerebellar fibers collaterals from the hypothalamo-spinal projection?
    Dietrichs E; Zheng ZH
    Brain Res; 1984 Apr; 296(2):225-31. PubMed ID: 6704740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsically directed pruning as a mechanism regulating the elimination of transient collateral pathways.
    Tolbert DL
    Brain Res; 1987 May; 430(1):11-21. PubMed ID: 3594263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of hypothalamic neurons projecting to the thoracic and sacral spinal segments in the cat.
    Kausz M
    J Hirnforsch; 1990; 31(6):697-703. PubMed ID: 1709187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebellar and spinal projections of the coeruleus complex in the duck: a fluorescent retrograde double-labeling study.
    Lucchi ML; Callegari E; Barazzoni AM; Chiocchetti R; Clavenzani P; Bortolami R
    Anat Rec; 1998 Jul; 251(3):392-7. PubMed ID: 9669767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collaterals of rubrospinal neurons to the cerebellum in rat. A retrograde fluorescent double labeling study.
    Huisman AM; Kuypers HG; Condé F; Keizer K
    Brain Res; 1983 Apr; 264(2):181-96. PubMed ID: 6303500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do certain spinocerebellar neurons in lamina IX at lumbosacral levels send collaterals to peripheral nerves? A retrograde fluorescent double labeling study in the cat.
    Xu Q; Grant G
    Arch Ital Biol; 1988 Jun; 126(3):179-92. PubMed ID: 3178393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diamidino yellow dihydrochloride (DY . 2HCl); a new fluorescent retrograde neuronal tracer, which migrates only very slowly out of the cell.
    Keizer K; Kuypers HG; Huisman AM; Dann O
    Exp Brain Res; 1983; 51(2):179-91. PubMed ID: 6194004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combination of Golgi impregnation and fluorescent retrograde labeling.
    Catsicas S; Berbel PJ; Innocenti GM
    J Neurosci Methods; 1986 Dec; 18(4):325-32. PubMed ID: 2432364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of intracerebellar collateralization of nucleocortical cell processes in a prosimian primate (Galago): a fluorescence retrograde study.
    Haines DE
    J Comp Neurol; 1988 Sep; 275(3):441-51. PubMed ID: 3225347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinocerebellar neurons and propriospinal neurons in the cervical spinal cord: a fluorescent double-labeling study in the rat and the cat.
    Verburgh CA; Kuypers HG; Voogd J; Stevens HP
    Exp Brain Res; 1989; 75(1):73-82. PubMed ID: 2707358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural circuitry of the adult rat central nervous system after spinal cord injury: a study using fast blue and the Bartha strain of pseudorabies virus.
    Kim ES; Kim GM; Lu X; Hsu CY; Xu XM
    J Neurotrauma; 2002 Jun; 19(6):787-800. PubMed ID: 12165138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extension and regeneration of corticospinal axons after early spinal injury and the maintenance of corticospinal topography.
    Bates CA; Stelzner DJ
    Exp Neurol; 1993 Sep; 123(1):106-17. PubMed ID: 8405271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization of amygdaloid projections to the mediodorsal thalamus and prefrontal cortex: a fluorescence retrograde transport study in the rat.
    McDonald AJ
    J Comp Neurol; 1987 Aug; 262(1):46-58. PubMed ID: 3624548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double retrograde neuronal labeling through divergent axon collaterals, using two fluorescent tracers with the same excitation wavelength which label different features of the cell.
    Kuypers HG; Bentivoglio M; Catsman-Berrevoets CE; Bharos AT
    Exp Brain Res; 1980; 40(4):383-92. PubMed ID: 6160043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A direct projection from the tuberomammillary nucleus to the spinal cord in the rat.
    Takada M; Li ZK; Hattori T
    Neurosci Lett; 1987 Aug; 79(3):257-62. PubMed ID: 3658218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interchange of callosal and association projections in the developing visual cortex.
    Innocenti GM; Clarke S; Kraftsik R
    J Neurosci; 1986 May; 6(5):1384-409. PubMed ID: 3012015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypothalamic orexin-A (hypocretin-1) neuronal projections to the vestibular complex and cerebellum in the rat.
    Ciriello J; Caverson MM
    Brain Res; 2014 Sep; 1579():20-34. PubMed ID: 25017945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.