BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 24189185)

  • 21. Assessment of steroidogenesis and steroidogenic enzyme functions.
    Luu-The V
    J Steroid Biochem Mol Biol; 2013 Sep; 137():176-82. PubMed ID: 23770321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-stereo-selective cytosolic human brain tissue 3-ketosteroid reductase is refractory to inhibition by AKR1C inhibitors.
    Steckelbroeck S; Lütjohann D; Bauman DR; Ludwig M; Friedl A; Hans VH; Penning TM; Klingmüller D
    Biochim Biophys Acta; 2010 Nov; 1801(11):1221-31. PubMed ID: 20673851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Androgen inactivation and steroid-converting enzyme expression in abdominal adipose tissue in men.
    Blouin K; Richard C; Brochu G; Hould FS; Lebel S; Marceau S; Biron S; Luu-The V; Tchernof A
    J Endocrinol; 2006 Dec; 191(3):637-49. PubMed ID: 17170221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The aldo-keto reductases (AKRs): Overview.
    Penning TM
    Chem Biol Interact; 2015 Jun; 234():236-46. PubMed ID: 25304492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective reduction of AKR1C2 in prostate cancer and its role in DHT metabolism.
    Ji Q; Chang L; VanDenBerg D; Stanczyk FZ; Stolz A
    Prostate; 2003 Mar; 54(4):275-89. PubMed ID: 12539226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human cytosolic hydroxysteroid dehydrogenases of the aldo-ketoreductase superfamily catalyze reduction of conjugated steroids: implications for phase I and phase II steroid hormone metabolism.
    Jin Y; Duan L; Lee SH; Kloosterboer HJ; Blair IA; Penning TM
    J Biol Chem; 2009 Apr; 284(15):10013-22. PubMed ID: 19218247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure-function aspects and inhibitor design of type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3).
    Penning TM; Burczynski ME; Jez JM; Lin HK; Ma H; Moore M; Ratnam K; Palackal N
    Mol Cell Endocrinol; 2001 Jan; 171(1-2):137-49. PubMed ID: 11165022
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular determinants of steroid recognition and catalysis in aldo-keto reductases. Lessons from 3alpha-hydroxysteroid dehydrogenase.
    Penning TM
    J Steroid Biochem Mol Biol; 1999; 69(1-6):211-25. PubMed ID: 10418995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steroid 5β-reductase (AKR1D1): Purification and characterization.
    Penning TM
    Methods Enzymol; 2023; 689():277-301. PubMed ID: 37802574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The roles of aldo-keto reductases in steroid hormone action.
    Bauman DR; Steckelbroeck S; Penning TM
    Drug News Perspect; 2004 Nov; 17(9):563-78. PubMed ID: 15645014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C3) in the extrahepatic metabolism of the steroidal aromatase inactivator Formestane.
    Wan R; Kong X; Yang Y; Tao S; Chen Y; Teichmann AT; Wieland FH
    J Steroid Biochem Mol Biol; 2020 Apr; 198():105527. PubMed ID: 31733346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transition from androgenic to neurosteroidal action of 5α-androstane-3α, 17β-diol through the type A γ-aminobutyric acid receptor in prostate cancer progression.
    Xia D; Lai DV; Wu W; Webb ZD; Yang Q; Zhao L; Yu Z; Thorpe JE; Disch BC; Ihnat MA; Jayaraman M; Dhanasekaran DN; Stratton KL; Cookson MS; Fung KM; Lin HK
    J Steroid Biochem Mol Biol; 2018 Apr; 178():89-98. PubMed ID: 29155210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In-Depth Dissection of the P133R Mutation in Steroid 5β-Reductase (AKR1D1): A Molecular Basis of Bile Acid Deficiency.
    Chen M; Jin Y; Penning TM
    Biochemistry; 2015 Oct; 54(41):6343-51. PubMed ID: 26418565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pathways and genes involved in steroid hormone metabolism in male pigs: a review and update.
    Robic A; Faraut T; Prunier A
    J Steroid Biochem Mol Biol; 2014 Mar; 140():44-55. PubMed ID: 24239507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members.
    O'connor T; Ireland LS; Harrison DJ; Hayes JD
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):487-504. PubMed ID: 10510318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interleukin 1β regulates progesterone metabolism in human cervical fibroblasts.
    Roberson AE; Hyatt K; Kenkel C; Hanson K; Myers DA
    Reprod Sci; 2012 Mar; 19(3):271-81. PubMed ID: 22064385
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcript profiling of the androgen signal in normal prostate, benign prostatic hyperplasia, and prostate cancer.
    Bauman DR; Steckelbroeck S; Peehl DM; Penning TM
    Endocrinology; 2006 Dec; 147(12):5806-16. PubMed ID: 16959841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of the molecular switch that regulates access of 5alpha-DHT to the androgen receptor.
    Penning TM; Bauman DR; Jin Y; Rizner TL
    Mol Cell Endocrinol; 2007 Feb; 265-266():77-82. PubMed ID: 17223255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis of the multispecificity demonstrated by 17beta-hydroxysteroid dehydrogenase types 1 and 5.
    Lin SX; Shi R; Qiu W; Azzi A; Zhu DW; Dabbagh HA; Zhou M
    Mol Cell Endocrinol; 2006 Mar; 248(1-2):38-46. PubMed ID: 16480815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activities of aldo-keto reductase 1 enzymes on two inhaled corticosteroids: implications for the pharmacological effects of inhaled corticosteroids.
    Jin Y
    Chem Biol Interact; 2011 May; 191(1-3):234-8. PubMed ID: 21276783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.