BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24189380)

  • 1. Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases.
    Lizzul AM; Hellier P; Purton S; Baganz F; Ladommatos N; Campos L
    Bioresour Technol; 2014 Jan; 151():12-8. PubMed ID: 24189380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases.
    Gentili FG
    Bioresour Technol; 2014 Oct; 169():27-32. PubMed ID: 25016463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Temperature and Light Intensity for Improved Mixotrophic Metabolism of
    Lee TH; Jang JK; Kim HW
    J Microbiol Biotechnol; 2017 Nov; 27(11):2010-2018. PubMed ID: 28870010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae.
    Bohutskyi P; Chow S; Ketter B; Fung Shek C; Yacar D; Tang Y; Zivojnovich M; Betenbaugh MJ; Bouwer EJ
    Bioresour Technol; 2016 Dec; 222():294-308. PubMed ID: 27728832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources.
    Ramanna L; Guldhe A; Rawat I; Bux F
    Bioresour Technol; 2014 Sep; 168():127-35. PubMed ID: 24768415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle assessment of
    Nawkarkar P; Singh AK; Abdin MZ; Kumar S
    J Biosci; 2019 Sep; 44(4):. PubMed ID: 31502567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cultivation of Chlorella vulgaris in wastewater with waste glycerol: Strategies for improving nutrients removal and enhancing lipid production.
    Ma X; Zheng H; Addy M; Anderson E; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2016 May; 207():252-61. PubMed ID: 26894565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation.
    Ramsundar P; Guldhe A; Singh P; Bux F
    Bioresour Technol; 2017 Mar; 227():82-92. PubMed ID: 28013140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions.
    Kim S; Park JE; Cho YB; Hwang SJ
    Bioresour Technol; 2013 Sep; 144():8-13. PubMed ID: 23850820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions.
    Mutanda T; Karthikeyan S; Bux F
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater.
    Yang L; Tan X; Li D; Chu H; Zhou X; Zhang Y; Yu H
    Bioresour Technol; 2015 Apr; 181():54-61. PubMed ID: 25638404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment.
    Wang M; Kuo-Dahab WC; Dolan S; Park C
    Bioresour Technol; 2014 Feb; 154():131-7. PubMed ID: 24384320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions.
    Juntila DJ; Bautista MA; Monotilla W
    Bioresour Technol; 2015 Sep; 191():395-8. PubMed ID: 25847795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production.
    Arbib Z; Ruiz J; Álvarez-Díaz P; Garrido-Pérez C; Perales JA
    Water Res; 2014 Feb; 49():465-74. PubMed ID: 24268718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of Lipid Production of Chlorella Pyrenoidosa Cultivated in Municipal Wastewater by Magnetic Treatment.
    Han S; Jin W; Chen Y; Tu R; Abomohra AE
    Appl Biochem Biotechnol; 2016 Nov; 180(6):1043-1055. PubMed ID: 27262584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing microalga
    Cheah WY; Show PL; Yap YJ; Mohd Zaid HF; Lam MK; Lim JW; Ho YC; Tao Y
    Bioengineered; 2020 Dec; 11(1):61-69. PubMed ID: 31884878
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure.
    Kobayashi N; Noel EA; Barnes A; Watson A; Rosenberg JN; Erickson G; Oyler GA
    Bioresour Technol; 2013 Dec; 150():377-86. PubMed ID: 24185420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading.
    Shriwastav A; Gupta SK; Ansari FA; Rawat I; Bux F
    Bioresour Technol; 2014 Dec; 174():60-6. PubMed ID: 25463782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed Wastewater Coupled with CO2 for Microalgae Culturing and Nutrient Removal.
    Yao L; Shi J; Miao X
    PLoS One; 2015; 10(9):e0139117. PubMed ID: 26418261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production.
    Chen CY; Kuo EW; Nagarajan D; Ho SH; Dong CD; Lee DJ; Chang JS
    Bioresour Technol; 2020 Apr; 302():122814. PubMed ID: 32004812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.