These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 24189380)
41. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Kumar K; Banerjee D; Das D Bioresour Technol; 2014; 152():225-33. PubMed ID: 24292202 [TBL] [Abstract][Full Text] [Related]
42. Efficacy of Chlorella pyrenoidosa and Scenedesmus abundans for Nutrient Removal in Rice Mill Effluent (Paddy Soaked Water). Abinandan S; Bhattacharya R; Shanthakumar S Int J Phytoremediation; 2015; 17(1-6):377-81. PubMed ID: 25409251 [TBL] [Abstract][Full Text] [Related]
43. Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy. Zhou W; Wang Z; Xu J; Ma L J Biosci Bioeng; 2018 Nov; 126(5):644-648. PubMed ID: 29801764 [TBL] [Abstract][Full Text] [Related]
44. Growth, nutrient removal, and lipid productivity promotion of Chlorella sorokiniana by phosphate solubilizing bacteria Bacillus megatherium in swine wastewater: Performances and mechanisms. Ge YM; Xing WC; Lu X; Hu SR; Liu JZ; Xu WF; Cheng HX; Gao F; Chen QG Bioresour Technol; 2024 May; 400():130697. PubMed ID: 38614145 [TBL] [Abstract][Full Text] [Related]
45. Application of ANN-MOGA for nutrient sequestration for wastewater remediation and production of polyunsaturated fatty acid (PUFA) by Chlorella sorokiniana MSP1. Kalwani M; Kumari A; Rudra SG; Chhabra D; Pabbi S; Shukla P Chemosphere; 2024 Feb; 349():140835. PubMed ID: 38043617 [TBL] [Abstract][Full Text] [Related]
46. Performance assessment of biofuel production in an algae-based remediation system. Wuang SC; Luo YD; Wang S; Chua PQ; Tee PS J Biotechnol; 2016 Mar; 221():43-8. PubMed ID: 26808868 [TBL] [Abstract][Full Text] [Related]
47. Coupled nutrient removal and biomass production with mixed algal culture: impact of biotic and abiotic factors. Su Y; Mennerich A; Urban B Bioresour Technol; 2012 Aug; 118():469-76. PubMed ID: 22717565 [TBL] [Abstract][Full Text] [Related]
48. The impact of elevated CO2 concentration on the quality of algal starch as a potential biofuel feedstock. Tanadul OU; VanderGheynst JS; Beckles DM; Powell AL; Labavitch JM Biotechnol Bioeng; 2014 Jul; 111(7):1323-31. PubMed ID: 24474069 [TBL] [Abstract][Full Text] [Related]
49. [Isolation, Identification and Characteristic Analysis of an Oil-producing Chlorella sp. Tolerant to High-strength Anaerobic Digestion Effluent]. Yang C; Wang WG; Ma DW; Tang XY; Hu QC Huan Jing Ke Xue; 2015 Jul; 36(7):2707-12. PubMed ID: 26489344 [TBL] [Abstract][Full Text] [Related]
50. Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Chiu SY; Kao CY; Chen TY; Chang YB; Kuo CM; Lin CS Bioresour Technol; 2015 May; 184():179-189. PubMed ID: 25499744 [TBL] [Abstract][Full Text] [Related]
51. Performance evaluation of an outdoor algal biorefinery for sustainable production of biomass, lipid and lutein valorizing flue-gas carbon dioxide and wastewater cocktail. De Bhowmick G; Sarmah AK; Sen R Bioresour Technol; 2019 Jul; 283():198-206. PubMed ID: 30908984 [TBL] [Abstract][Full Text] [Related]
52. Bioremediation of Pyropia-processing wastewater coupled with lipid production using Chlorella sp. Zheng S; Chen S; Zou S; Yan Y; Gao G; He M; Wang C; Chen H; Wang Q Bioresour Technol; 2021 Feb; 321():124428. PubMed ID: 33272824 [TBL] [Abstract][Full Text] [Related]
53. Evaluation of Chlorella sorokiniana isolated from local municipal wastewater for dual application in nutrient removal and biodiesel production. Eladel H; Abomohra AE; Battah M; Mohmmed S; Radwan A; Abdelrahim H Bioprocess Biosyst Eng; 2019 Mar; 42(3):425-433. PubMed ID: 30465129 [TBL] [Abstract][Full Text] [Related]
54. Isolation of a bacterial strain, Acinetobacter sp. from centrate wastewater and study of its cooperation with algae in nutrients removal. Liu H; Lu Q; Wang Q; Liu W; Wei Q; Ren H; Ming C; Min M; Chen P; Ruan R Bioresour Technol; 2017 Jul; 235():59-69. PubMed ID: 28364634 [TBL] [Abstract][Full Text] [Related]
55. Application of high-salinity stress for enhancing the lipid productivity of Chlorella sorokiniana HS1 in a two-phase process. Kakarla R; Choi JW; Yun JH; Kim BH; Heo J; Lee S; Cho DH; Ramanan R; Kim HS J Microbiol; 2018 Jan; 56(1):56-64. PubMed ID: 29299841 [TBL] [Abstract][Full Text] [Related]
56. Simultaneous nitrogen, phosphorous, and hardness removal from reverse osmosis concentrate by microalgae cultivation. Wang XX; Wu YH; Zhang TY; Xu XQ; Dao GH; Hu HY Water Res; 2016 May; 94():215-224. PubMed ID: 26954575 [TBL] [Abstract][Full Text] [Related]
57. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Xing Y; Li Z; Fan Y; Hou H Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259 [TBL] [Abstract][Full Text] [Related]
58. Integrating anaerobic digestion and microalgae cultivation for dairy wastewater treatment and potential biochemicals production from the harvested microalgal biomass. Kusmayadi A; Lu PH; Huang CY; Leong YK; Yen HW; Chang JS Chemosphere; 2022 Mar; 291(Pt 1):133057. PubMed ID: 34838828 [TBL] [Abstract][Full Text] [Related]
59. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285 [TBL] [Abstract][Full Text] [Related]
60. Microalgae as promising source for integrated wastewater treatment and biodiesel production. Fal S; Benhima R; El Mernissi N; Kasmi Y; Smouni A; El Arroussi H Int J Phytoremediation; 2022; 24(1):34-46. PubMed ID: 34000939 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]