These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24189382)

  • 1. In situ synchrotron IR study relating temperature and heating rate to surface functional group changes in biomass.
    Kirtania K; Tanner J; Kabir KB; Rajendran S; Bhattacharya S
    Bioresour Technol; 2014 Jan; 151():36-42. PubMed ID: 24189382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on growth and pyrolysis characteristics of microalgae using Thermogravimetric Analysis-Infrared Spectroscopy and synchrotron Fourier Transform Infrared Spectroscopy.
    Li F; Srivatsa SC; Batchelor W; Bhattacharya S
    Bioresour Technol; 2017 Apr; 229():1-10. PubMed ID: 28088575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties.
    Han Y; Boateng AA; Qi PX; Lima IM; Chang J
    J Environ Manage; 2013 Mar; 118():196-204. PubMed ID: 23454371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-spatial-resolution mapping of superhydrophobic cicada wing surface chemistry using infrared microspectroscopy and infrared imaging at two synchrotron beamlines.
    Tobin MJ; Puskar L; Hasan J; Webb HK; Hirschmugl CJ; Nasse MJ; Gervinskas G; Juodkazis S; Watson GS; Watson JA; Crawford RJ; Ivanova EP
    J Synchrotron Radiat; 2013 May; 20(Pt 3):482-9. PubMed ID: 23592628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the pyrolysis behavior of lignins from different tree species.
    Wang S; Wang K; Liu Q; Gu Y; Luo Z; Cen K; Fransson T
    Biotechnol Adv; 2009; 27(5):562-7. PubMed ID: 19393737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural evolution of maize stalk/char particles during pyrolysis.
    Fu P; Hu S; Sun L; Xiang J; Yang T; Zhang A; Zhang J
    Bioresour Technol; 2009 Oct; 100(20):4877-83. PubMed ID: 19481930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of heating rates on the products of high-temperature pyrolysis of waste wood pellets and biomass model compounds.
    Efika CE; Onwudili JA; Williams PT
    Waste Manag; 2018 Jun; 76():497-506. PubMed ID: 29559298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TG-FTIR study on co-pyrolysis of municipal solid waste with biomass.
    Ren Q; Zhao C; Wu X; Liang C; Chen X; Shen J; Tang G; Wang Z
    Bioresour Technol; 2009 Sep; 100(17):4054-7. PubMed ID: 19362817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct fluorination applied to wood flour used as a reinforcement for polymers.
    Saulnier F; Dubois M; Charlet K; Frezet L; Beakou A
    Carbohydr Polym; 2013 Apr; 94(1):642-6. PubMed ID: 23544585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of activated carbon from sawdust of Algarroba wood. 1. Physical activation and pyrolysis.
    Matos J; Nahas C; Rojas L; Rosales M
    J Hazard Mater; 2011 Nov; 196():360-9. PubMed ID: 21955661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative flash pyrolysis Fourier transform infrared spectroscopy of organic materials.
    Court RW; Sephton MA
    Anal Chim Acta; 2009 Apr; 639(1-2):62-6. PubMed ID: 19345759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrolysis of sal seed to liquid product.
    Singh VK; Soni AB; Kumar S; Singh RK
    Bioresour Technol; 2014 Jan; 151():432-5. PubMed ID: 24268507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis characteristics of bean dregs and in situ visualization of pyrolysis transformation.
    Zhu G; Zhu X; Xiao Z; Zhou R; Yi F
    Waste Manag; 2012 Dec; 32(12):2287-93. PubMed ID: 22846884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism for thermal decomposition of cellulose and its main products.
    Shen DK; Gu S
    Bioresour Technol; 2009 Dec; 100(24):6496-504. PubMed ID: 19625184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of zinc chloride addition on the chemical structure of bio-oil obtained during co-pyrolysis of wood/synthetic polymer blends.
    Rutkowski P
    Waste Manag; 2009 Dec; 29(12):2983-93. PubMed ID: 19720516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow-pyrolysis and -oxidation of different biomass fuel samples.
    Haykiri-Acma H; Yaman S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(9):1909-20. PubMed ID: 16849135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling for proximate analysis and heating value of torrefied biomass with vibration spectroscopy.
    Via BK; Adhikari S; Taylor S
    Bioresour Technol; 2013 Apr; 133():1-8. PubMed ID: 23402771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the liquid product obtained by pyrolysis of karanja seed.
    Nayan NK; Kumar S; Singh RK
    Bioresour Technol; 2012 Nov; 124():186-9. PubMed ID: 22989645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylation and characterization of spruce (Picea abies) galactoglucomannans.
    Xu C; Leppänen AS; Eklund P; Holmlund P; Sjöholm R; Sundberg K; Willför S
    Carbohydr Res; 2010 Apr; 345(6):810-6. PubMed ID: 20144827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.