These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24189398)

  • 21. Engineering of GAL1 promoter-driven expression system with artificial transcription factors.
    Park KS; Kim JS
    Biochem Biophys Res Commun; 2006 Dec; 351(2):412-7. PubMed ID: 17069762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromatin decouples promoter threshold from dynamic range.
    Lam FH; Steger DJ; O'Shea EK
    Nature; 2008 May; 453(7192):246-50. PubMed ID: 18418379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of the core promoter regions of the Saccharomyces cerevisiae RPS3 gene.
    Joo YJ; Kim JH; Baek JH; Seong KM; Lee JY; Kim J
    Biochim Biophys Acta; 2009; 1789(11-12):741-50. PubMed ID: 19853675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. cis Determinants of Promoter Threshold and Activation Timescale.
    Hansen AS; O'Shea EK
    Cell Rep; 2015 Aug; 12(8):1226-33. PubMed ID: 26279577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae.
    Yamamoto A; Mizukami Y; Sakurai H
    J Biol Chem; 2005 Mar; 280(12):11911-9. PubMed ID: 15647283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Balancing transcriptional interference and initiation on the GAL7 promoter of Saccharomyces cerevisiae.
    Greger IH; Aranda A; Proudfoot N
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8415-20. PubMed ID: 10890898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of transcription factor Kar4 in regulating downstream events in the Saccharomyces cerevisiae pheromone response pathway.
    Lahav R; Gammie A; Tavazoie S; Rose MD
    Mol Cell Biol; 2007 Feb; 27(3):818-29. PubMed ID: 17101777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The N-Terminal Tail of Histone H3 Regulates Copper Homeostasis in Saccharomyces cerevisiae.
    Singh S; Sahu RK; Tomar RS
    Mol Cell Biol; 2021 Jan; 41(2):. PubMed ID: 33257505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae.
    Young ET; Zhang C; Shokat KM; Parua PK; Braun KA
    J Biol Chem; 2012 Aug; 287(34):29021-34. PubMed ID: 22761425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dal81 enhances Stp1- and Stp2-dependent transcription necessitating negative modulation by inner nuclear membrane protein Asi1 in Saccharomyces cerevisiae.
    Boban M; Ljungdahl PO
    Genetics; 2007 Aug; 176(4):2087-97. PubMed ID: 17603098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conserved regulation of the Hansenula polymorpha MOX promoter in Saccharomyces cerevisiae reveals insights in the transcriptional activation by Adr1p.
    Pereira GG; Hollenberg CP
    Eur J Biochem; 1996 May; 238(1):181-91. PubMed ID: 8665936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Memorable transcription.
    Turner BM
    Nat Cell Biol; 2003 May; 5(5):390-3. PubMed ID: 12724774
    [No Abstract]   [Full Text] [Related]  

  • 33. Promoter elements determining weak expression of the GAL4 regulatory gene of Saccharomyces cerevisiae.
    Griggs DW; Johnston M
    Mol Cell Biol; 1993 Aug; 13(8):4999-5009. PubMed ID: 8393142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GABA induction of the Saccharomyces cerevisiae UGA4 gene depends on the quality of the carbon source: role of the key transcription factors acting in this process.
    Levi CE; Cardillo SB; Bertotti S; Ríos C; Correa García S; Moretti MB
    Biochem Biophys Res Commun; 2012 May; 421(3):572-7. PubMed ID: 22525679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression dynamics of a cellular metabolic network.
    Kharchenko P; Church GM; Vitkup D
    Mol Syst Biol; 2005; 1():2005.0016. PubMed ID: 16729051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptional regulatory network shapes the genome structure of Saccharomyces cerevisiae.
    Li S; Heermann DW
    Nucleus; 2013; 4(3):216-28. PubMed ID: 23674068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsically Disordered Regions Direct Transcription Factor In Vivo Binding Specificity.
    Brodsky S; Jana T; Mittelman K; Chapal M; Kumar DK; Carmi M; Barkai N
    Mol Cell; 2020 Aug; 79(3):459-471.e4. PubMed ID: 32553192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstructing genetic networks in yeast.
    Zhang Z; Gerstein M
    Nat Biotechnol; 2003 Nov; 21(11):1295-7. PubMed ID: 14595359
    [No Abstract]   [Full Text] [Related]  

  • 39. Transcriptional regulation of the Saccharomyces cerevisiae amino acid permease gene BAP2.
    Nielsen PS; van den Hazel B; Didion T; de Boer M; Jørgensen M; Planta RJ; Kielland-Brandt MC; Andersen HA
    Mol Gen Genet; 2001 Jan; 264(5):613-22. PubMed ID: 11212916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Snf1-independent, glucose-resistant transcription of Adr1-dependent genes in a mediator mutant of Saccharomyces cerevisiae.
    Young ET; Yen K; Dombek KM; Law GL; Chang E; Arms E
    Mol Microbiol; 2009 Oct; 74(2):364-83. PubMed ID: 19732343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.