These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24189407)

  • 1. Syntheses of single-crystal apatite particles with preferred orientation to the a- and c-axes as models of hard tissue and their applications.
    Aizawa M; Matsuura T; Zhuang Z
    Biol Pharm Bull; 2013; 36(11):1654-61. PubMed ID: 24189407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein adsorption on single-crystal hydroxyapatite particles with preferred orientation to a(b)- and c-axes.
    Zhuang Z; Aizawa M
    J Mater Sci Mater Med; 2013 May; 24(5):1211-6. PubMed ID: 23386210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a,b-plane-oriented hydroxyapatite ceramics as models for living bones and their cell adhesion behavior.
    Zhuang Z; Fujimi TJ; Nakamura M; Konishi T; Yoshimura H; Aizawa M
    Acta Biomater; 2013 May; 9(5):6732-40. PubMed ID: 23403169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural observation of single-crystal apatite fibres.
    Aizawa M; Porter AE; Best SM; Bonfield W
    Biomaterials; 2005 Jun; 26(17):3427-33. PubMed ID: 15621231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel.
    Zhuang Z; Yoshimura H; Aizawa M
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2534-40. PubMed ID: 23623065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins.
    Kandori K; Oda S; Fukusumi M; Morisada Y
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):140-5. PubMed ID: 19515538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientation and deformation of mineral crystals in tooth surfaces.
    Fujisaki K; Todoh M; Niida A; Shibuya R; Kitami S; Tadano S
    J Mech Behav Biomed Mater; 2012 Jun; 10():176-82. PubMed ID: 22520429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histological evaluations of apatite-fiber scaffold cultured with mesenchymal stem cells by implantation at rat subcutaneous tissue.
    Suzuki K; Nagata K; Yokota T; Honda M; Aizawa M
    Biomed Mater Eng; 2017; 28(1):57-64. PubMed ID: 28269745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of hydroxyapatite nanoparticles mimicking biological apatite from eggshells for bone-tissue engineering.
    Nga NK; Thuy Chau NT; Viet PH
    Colloids Surf B Biointerfaces; 2018 Dec; 172():769-778. PubMed ID: 30266011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and area-specific coating of fluoride-incorporated apatite layers by a laser-assisted biomimetic process for tooth surface functionalization.
    Joseph Nathanael A; Oyane A; Nakamura M; Mahanti M; Koga K; Shitomi K; Miyaji H
    Acta Biomater; 2018 Oct; 79():148-157. PubMed ID: 30149210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doping gadolinium versus lanthanum into hydroxyapatite particles for better biocompatibility in bone marrow stem cells.
    Yuan SJ; Qi XY; Zhang H; Yuan L; Huang J
    Chem Biol Interact; 2021 Sep; 346():109579. PubMed ID: 34274335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials.
    Pasteris JD; Wopenka B; Freeman JJ; Rogers K; Valsami-Jones E; van der Houwen JA; Silva MJ
    Biomaterials; 2004 Jan; 25(2):229-38. PubMed ID: 14585710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of nanometer-scale rod array of hydroxyapatite crystal.
    Hayakawa S; Li Y; Tsuru K; Osaka A; Fujii E; Kawabata K
    Acta Biomater; 2009 Jul; 5(6):2152-60. PubMed ID: 19286435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale hydroxyapatite particles for bone tissue engineering.
    Zhou H; Lee J
    Acta Biomater; 2011 Jul; 7(7):2769-81. PubMed ID: 21440094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix.
    Iijima M; Moradian-Oldak J
    Biomaterials; 2005 May; 26(13):1595-603. PubMed ID: 15522761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering.
    Nga NK; Giang LT; Huy TQ; Viet PH; Migliaresi C
    Colloids Surf B Biointerfaces; 2014 Apr; 116():666-73. PubMed ID: 24274938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle-Attachment-Mediated and Matrix/Lattice-Guided Enamel Apatite Crystal Growth.
    Jokisaari JR; Wang C; Qiao Q; Hu X; Reed DA; Bleher R; Luan X; Klie RF; Diekwisch TGH
    ACS Nano; 2019 Mar; 13(3):3151-3161. PubMed ID: 30763075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering.
    Lei Y; Xu Z; Ke Q; Yin W; Chen Y; Zhang C; Guo Y
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():134-142. PubMed ID: 28024569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mineral acquisition rates in developing enamel on maxillary and mandibular incisors of rats and mice: implications to extracellular acid loading as apatite crystals mature.
    Smith CE; Chong DL; Bartlett JD; Margolis HC
    J Bone Miner Res; 2005 Feb; 20(2):240-9. PubMed ID: 15647818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ fabrication of nano-hydroxyapatite in a macroporous chitosan scaffold for tissue engineering.
    Chen JD; Wang Y; Chen X
    J Biomater Sci Polym Ed; 2009; 20(11):1555-65. PubMed ID: 19619396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.