These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24189978)

  • 1. Omnidirectional spin-wave nanograting coupler.
    Yu H; Duerr G; Huber R; Bahr M; Schwarze T; Brandl F; Grundler D
    Nat Commun; 2013; 4():2702. PubMed ID: 24189978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoimaging of Ultrashort Magnon Emission by Ferromagnetic Grating Couplers at GHz Frequencies.
    Baumgaertl K; Gräfe J; Che P; Mucchietto A; Förster J; Träger N; Bechtel M; Weigand M; Schütz G; Grundler D
    Nano Lett; 2020 Oct; 20(10):7281-7286. PubMed ID: 32830984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable short-wavelength spin wave excitation from pinned magnetic domain walls.
    Van de Wiele B; Hämäläinen SJ; Baláž P; Montoncello F; van Dijken S
    Sci Rep; 2016 Feb; 6():21330. PubMed ID: 26883893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building Blocks for Magnon Optics: Emission and Conversion of Short Spin Waves.
    Groß F; Zelent M; Träger N; Förster J; Sanli UT; Sauter R; Decker M; Back CH; Weigand M; Keskinbora K; Schütz G; Krawczyk M; Gräfe J
    ACS Nano; 2020 Dec; 14(12):17184-17193. PubMed ID: 33253544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review and prospects of magnonic crystals and devices with reprogrammable band structure.
    Krawczyk M; Grundler D
    J Phys Condens Matter; 2014 Mar; 26(12):123202. PubMed ID: 24599025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaching soft X-ray wavelengths in nanomagnet-based microwave technology.
    Yu H; d' Allivy Kelly O; Cros V; Bernard R; Bortolotti P; Anane A; Brandl F; Heimbach F; Grundler D
    Nat Commun; 2016 Apr; 7():11255. PubMed ID: 27063401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin Wave Radiation by a Topological Charge Dipole.
    Díaz SA; Hirosawa T; Loss D; Psaroudaki C
    Nano Lett; 2020 Sep; 20(9):6556-6562. PubMed ID: 32812768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent Excitation of Heterosymmetric Spin Waves with Ultrashort Wavelengths.
    Dieterle G; Förster J; Stoll H; Semisalova AS; Finizio S; Gangwar A; Weigand M; Noske M; Fähnle M; Bykova I; Gräfe J; Bozhko DA; Musiienko-Shmarova HY; Tiberkevich V; Slavin AN; Back CH; Raabe J; Schütz G; Wintz S
    Phys Rev Lett; 2019 Mar; 122(11):117202. PubMed ID: 30951356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Loss Nanoscopic Spin-Wave Guiding in Continuous Yttrium Iron Garnet Films.
    Qin H; Holländer RB; Flajšman L; van Dijken S
    Nano Lett; 2022 Jul; 22(13):5294-5300. PubMed ID: 35729708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral Magnonics: Reprogrammable Nanoscale Spin Wave Networks Based on Chiral Domain Walls.
    Chen J; Hu J; Yu H
    iScience; 2020 Jun; 23(6):101153. PubMed ID: 32450517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale magnonic Fabry-Pérot resonator for low-loss spin-wave manipulation.
    Qin H; Holländer RB; Flajšman L; Hermann F; Dreyer R; Woltersdorf G; van Dijken S
    Nat Commun; 2021 Apr; 12(1):2293. PubMed ID: 33863877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric-Field Control of Propagating Spin Waves by Ferroelectric Domain-Wall Motion in a Multiferroic Heterostructure.
    Qin H; Dreyer R; Woltersdorf G; Taniyama T; van Dijken S
    Adv Mater; 2021 Jul; 33(27):e2100646. PubMed ID: 34050997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of a robust magnonic spin wave interferometer.
    Kanazawa N; Goto T; Sekiguchi K; Granovsky AB; Ross CA; Takagi H; Nakamura Y; Inoue M
    Sci Rep; 2016 Jul; 6():30268. PubMed ID: 27443989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond Laser Pulse Driven Caustic Spin Wave Beams.
    Muralidhar S; Khymyn R; Awad AA; Alemán A; Hanstorp D; Åkerman J
    Phys Rev Lett; 2021 Jan; 126(3):037204. PubMed ID: 33543954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric-field control of spin waves at room temperature in multiferroic BiFeO3.
    Rovillain P; de Sousa R; Gallais Y; Sacuto A; Méasson MA; Colson D; Forget A; Bibes M; Barthélémy A; Cazayous M
    Nat Mater; 2010 Dec; 9(12):975-9. PubMed ID: 21076416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral Emission of Exchange Spin Waves by Magnetic Skyrmions.
    Chen J; Hu J; Yu H
    ACS Nano; 2021 Mar; 15(3):4372-4379. PubMed ID: 33645959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric excitation and mode control using an Oersted field in a NiFe nanowire.
    Hwang S; Yoon S; Seo D; Han SH; Cho BK
    Sci Rep; 2021 Jul; 11(1):14207. PubMed ID: 34244524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-Dielectric Nanophotonics Enables Tunable Excitation of the Exchange Spin Waves.
    Chernov AI; Kozhaev MA; Ignatyeva DO; Beginin EN; Sadovnikov AV; Voronov AA; Karki D; Levy M; Belotelov VI
    Nano Lett; 2020 Jul; 20(7):5259-5266. PubMed ID: 32515967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave excitation of spin wave beams in thin ferromagnetic films.
    Gruszecki P; Kasprzak M; Serebryannikov AE; Krawczyk M; Śmigaj W
    Sci Rep; 2016 Mar; 6():22367. PubMed ID: 26971711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse-design magnonic devices.
    Wang Q; Chumak AV; Pirro P
    Nat Commun; 2021 May; 12(1):2636. PubMed ID: 33976137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.