These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24190006)

  • 1. Factors controlling bacterial production in marine and freshwater sediments.
    Sander BC; Kalff J
    Microb Ecol; 1993 Sep; 26(2):79-99. PubMed ID: 24190006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimates of bacterial productivity in marine sediments and water from a temperate saltmarsh lagoon.
    Tibbles BJ; Davis CL; Harris JM; Lucas MI
    Microb Ecol; 1992 May; 23(3):195-209. PubMed ID: 24192931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring Bacterial Production in Deep-Sea Sediments using 3H-Thymidine Incorporation: Ecological Significance.
    Dixon JL; Turley CM
    Microb Ecol; 2001 Dec; 42(4):549-561. PubMed ID: 12024238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benthic bacterial biomass and production in the Hudson River estuary.
    Austin HK; Findlay SE
    Microb Ecol; 1989 Sep; 18(2):105-16. PubMed ID: 24196126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial production in freshwater sediments: Cell specific versus system measures.
    Fallon RD; Boylen CW
    Microb Ecol; 1990 Jan; 19(1):53-62. PubMed ID: 24196254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary.
    Sinsabaugh RL; Findlay S
    Microb Ecol; 1995 Sep; 30(2):127-41. PubMed ID: 24185480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies.
    Ariyarathna T; Vlahos P; Tobias C; Smith R
    Environ Toxicol Chem; 2016 Jan; 35(1):47-55. PubMed ID: 26178383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of Viral and Prokaryotic Production Rates in Benthic Ecosystems: A Methods Comparison.
    Rastelli E; Dell'Anno A; Corinaldesi C; Middelboe M; Noble RT; Danovaro R
    Front Microbiol; 2016; 7():1501. PubMed ID: 27713739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the weight loss-on-ignition methodology to quantify organic and carbonate carbon of sediments from diverse sources.
    Wang Q; Li Y; Wang Y
    Environ Monit Assess; 2011 Mar; 174(1-4):241-57. PubMed ID: 20424912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of diel rates of bacterial secondary production in aquatic environments.
    Riemann B; Søndergaard M
    Appl Environ Microbiol; 1984 Apr; 47(4):632-8. PubMed ID: 16346505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of the [(14)C]leucine incorporation technique to measure bacterial production in river sediments and the epiphyton.
    Fischer H; Pusch M
    Appl Environ Microbiol; 1999 Oct; 65(10):4411-8. PubMed ID: 10508068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags.
    Wang Y; Sheng HF; He Y; Wu JY; Jiang YX; Tam NF; Zhou HW
    Appl Environ Microbiol; 2012 Dec; 78(23):8264-71. PubMed ID: 23001654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic matter in sediments of an acidic mining lake as assessed by lipid analysis. Part I: fatty acids.
    Poerschmann J; Koschorreck M; Górecki T
    Sci Total Environ; 2012 Jan; 414():614-23. PubMed ID: 22119026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of radiolabelled thymidine and leucine to estimate bacterial production in soils from continental antarctica.
    Tibbles BJ; Harris JM
    Appl Environ Microbiol; 1996 Feb; 62(2):694-701. PubMed ID: 16535246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benthic bacterial production and protozoan predation in a silty freshwater environment.
    Wieltschnig C; Fischer UR; Kirschner AK; Velimirov B
    Microb Ecol; 2003 Jul; 46(1):62-72. PubMed ID: 12739079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats.
    White PA; Kalff J; Rasmussen JB; Gasol JM
    Microb Ecol; 1991 Dec; 21(1):99-118. PubMed ID: 24194204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal variation and controlling factors of anaerobic ammonium oxidation in freshwater river sediments in the Taihu Lake region of China.
    Zhao Y; Xia Y; Kana TM; Wu Y; Li X; Yan X
    Chemosphere; 2013 Nov; 93(9):2124-31. PubMed ID: 23978673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of radiolabeled leucine into protein to estimate bacterial production in plant litter, sediment, epiphytic biofilms, and water samples.
    Buesing N; Gessner MO
    Microb Ecol; 2003 Mar; 45(3):291-301. PubMed ID: 12658525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncultured
    Dyksma S; Lenk S; Sawicka JE; Mußmann M
    Front Microbiol; 2018; 9():3124. PubMed ID: 30619197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of lake sediments as a pathway for microcystin dynamics in shallow eutrophic lakes.
    Song H; Coggins LX; Reichwaldt ES; Ghadouani A
    Toxins (Basel); 2015 Mar; 7(3):900-18. PubMed ID: 25793723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.