These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24190340)

  • 1. Thymidine and leucine incorporation in soil bacteria with different cell size.
    Bååth E
    Microb Ecol; 1994 May; 27(3):267-78. PubMed ID: 24190340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thymidine incorporation of bacteria sequentially extracted from soil using repeated homogenization-centrifugation.
    Bååth E
    Microb Ecol; 1996 Mar; 31(2):153-66. PubMed ID: 24185739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of [h]leucine and [h]valine into protein of freshwater bacteria: field applications.
    Jørgensen NO
    Appl Environ Microbiol; 1992 Nov; 58(11):3647-53. PubMed ID: 16348808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth Rates of Bacterial Communities in Soils at Varying pH: A Comparison of the Thymidine and Leucine Incorporation Techniques.
    Bååth E
    Microb Ecol; 1998 Nov; 36(3):316-327. PubMed ID: 9852511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental evaluation of conversion factors for the [h]thymidine incorporation assay of bacterial secondary productivity.
    Coveney MF; Wetzel RG
    Appl Environ Microbiol; 1988 Aug; 54(8):2018-26. PubMed ID: 16347712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-driven adaptation of the bacterial community in peat measured by using thymidine and leucine incorporation.
    Ranneklev SB; Bååth E
    Appl Environ Microbiol; 2001 Mar; 67(3):1116-22. PubMed ID: 11229900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial production in a mesohumic lake estimated from [(14)C]leucine incorporation rate.
    Tulonen T
    Microb Ecol; 1993 Nov; 26(3):201-17. PubMed ID: 24190090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid method of determining factors limiting bacterial growth in soil.
    Aldén L; Demoling F; Bååth E
    Appl Environ Microbiol; 2001 Apr; 67(4):1830-8. PubMed ID: 11282640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between coastal bacterioplankton growth rates and biomass production: comparison of leucine and thymidine uptake with single-cell physiological characteristics.
    Franco-Vidal L; Morán XA
    Microb Ecol; 2011 Feb; 61(2):328-41. PubMed ID: 21120654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of phagocytic and bactericidal activities of neutrophil granulocytes. Determination of viable extracellular bacteria by their incorporation of 14C-leucine and 3H-thymidine.
    Braconier JH; Odeberg H
    Scand J Haematol; 1979 Nov; 23(5):407-14. PubMed ID: 44387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protozoan grazing and bacterial production in stratified lake vechten estimated with fluorescently labeled bacteria and by thymidine incorporation.
    Bloem J; Ellenbroek FM; Bär-Gilissen MJ; Cappenberg TE
    Appl Environ Microbiol; 1989 Jul; 55(7):1787-95. PubMed ID: 16347972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of heterotrophic bacterial production to the carbon budget of the river Seine (France).
    Servais P; Garnier J
    Microb Ecol; 1993 Jan; 25(1):19-33. PubMed ID: 24189704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Underestimation of DNA synthesis by [h]thymidine incorporation in marine bacteria.
    Jeffrey WH; Paul JH
    Appl Environ Microbiol; 1988 Dec; 54(12):3165-8. PubMed ID: 16347806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of [h]leucine and [h]valine into protein of freshwater bacteria: uptake kinetics and intracellular isotope dilution.
    Jørgensen NO
    Appl Environ Microbiol; 1992 Nov; 58(11):3638-46. PubMed ID: 16348807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating Bacterioplankton Production by Measuring [H]thymidine Incorporation in a Eutrophic Swedish Lake.
    Bell RT; Ahlgren GM; Ahlgren I
    Appl Environ Microbiol; 1983 Jun; 45(6):1709-21. PubMed ID: 16346304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth distribution of bacterial production in a stratified lake with an anoxic hypolimnion.
    McDonough RJ; Sanders RW; Porter KG; Kirchman DL
    Appl Environ Microbiol; 1986 Nov; 52(5):992-1000. PubMed ID: 16347229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA Synthesis and Tritiated Thymidine Incorporation by Heterotrophic Freshwater Bacteria in Continuous Culture.
    Ellenbroek FM; Cappenberg TE
    Appl Environ Microbiol; 1991 Jun; 57(6):1675-1682. PubMed ID: 16348505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil.
    Bååth E; Díaz-Raviña M; Bakken LR
    Microb Ecol; 2005 Nov; 50(4):496-505. PubMed ID: 16328661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the sediment bacterial community in groundwater discharge zones of an alkaline fen: a seasonal study.
    Gsell TC; Holben WE; Ventullo RM
    Appl Environ Microbiol; 1997 Aug; 63(8):3111-8. PubMed ID: 9251197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity of the tritiated thymidine method for estimating bacterial growth rates: measurement of isotope dilution during DNA synthesis.
    Pollard PC; Moriarty DJ
    Appl Environ Microbiol; 1984 Dec; 48(6):1076-83. PubMed ID: 6517579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.