These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24190498)

  • 1. Functional assembly of camphor converting two-component Baeyer-Villiger monooxygenases with a flavin reductase from E. coli.
    Kadow M; Balke K; Willetts A; Bornscheuer UT; Bäckvall JE
    Appl Microbiol Biotechnol; 2014 May; 98(9):3975-86. PubMed ID: 24190498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions.
    Iwaki H; Grosse S; Bergeron H; Leisch H; Morley K; Hasegawa Y; Lau PC
    Appl Environ Microbiol; 2013 May; 79(10):3282-93. PubMed ID: 23524667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diketocamphane enantiomer-specific 'Baeyer-Villiger' monooxygenases from camphor-grown Pseudomonas putida ATCC 17453.
    Jones KH; Smith RT; Trudgill PW
    J Gen Microbiol; 1993 Apr; 139(4):797-805. PubMed ID: 8515237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Completing the series of BVMOs involved in camphor metabolism of Pseudomonas putida NCIMB 10007 by identification of the two missing genes, their functional expression in E. coli, and biochemical characterization.
    Kadow M; Loschinski K; Sass S; Schmidt M; Bornscheuer UT
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):419-29. PubMed ID: 22286514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple native flavin reductases in camphor-metabolizing Pseudomonas putida NCIMB 10007: functional interaction with two-component diketocamphane monooxygenase isoenzymes.
    Willetts A; Kelly DR
    Microbiology (Reading); 2014 Aug; 160(Pt 8):1783-1794. PubMed ID: 24836624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Camphor revisited: studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453.
    Taylor DG; Trudgill PW
    J Bacteriol; 1986 Feb; 165(2):489-97. PubMed ID: 3944058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase.
    Jawanda N; Ahmed K; Tu SC
    Biochemistry; 2008 Jan; 47(1):368-77. PubMed ID: 18067321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer-Villiger monooxygenase.
    Isupov MN; Schröder E; Gibson RP; Beecher J; Donadio G; Saneei V; Dcunha SA; McGhie EJ; Sayer C; Davenport CF; Lau PC; Hasegawa Y; Iwaki H; Kadow M; Balke K; Bornscheuer UT; Bourenkov G; Littlechild JA
    Acta Crystallogr D Biol Crystallogr; 2015 Nov; 71(Pt 11):2344-53. PubMed ID: 26527149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant expression and purification of the 2,5-diketocamphane 1,2-monooxygenase from the camphor metabolizing Pseudomonas putida strain NCIMB 10007.
    Kadow M; Saß S; Schmidt M; Bornscheuer UT
    AMB Express; 2011 Jun; 1(1):13. PubMed ID: 21906366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divorce in the two-component BVMO family: the single oxygenase for enantioselective chemo-enzymatic Baeyer-Villiger oxidations.
    Röllig R; Paul CE; Claeys-Bruno M; Duquesne K; Kara S; Alphand V
    Org Biomol Chem; 2021 Apr; 19(15):3441-3450. PubMed ID: 33899864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scale-up of Baeyer-Villiger monooxygenase-catalyzed synthesis of enantiopure compounds.
    Geitner K; Rehdorf J; Snajdrova R; Bornscheuer UT
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1087-93. PubMed ID: 20689951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavin-Dependent Redox Transfers by the Two-Component Diketocamphane Monooxygenases of Camphor-Grown Pseudomonas putida NCIMB 10007.
    Willetts A; Kelly D
    Microorganisms; 2016 Oct; 4(4):. PubMed ID: 27754389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterised Flavin-Dependent Two-Component Monooxygenases from the CAM Plasmid of
    Willetts A
    Microorganisms; 2018 Dec; 7(1):. PubMed ID: 30577535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered mechanism of the alkanesulfonate FMN reductase with the monooxygenase enzyme.
    Gao B; Ellis HR
    Biochem Biophys Res Commun; 2005 Jun; 331(4):1137-45. PubMed ID: 15882995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cofactor trapping, a new method to produce flavin mononucleotide.
    Krauss U; Svensson V; Wirtz A; Knieps-Grünhagen E; Jaeger KE
    Appl Environ Microbiol; 2011 Feb; 77(3):1097-100. PubMed ID: 21131527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Evaluation of the π-Helix in the NAD(P)H:FMN Reductase of the Alkanesulfonate Monooxygenase System.
    Musila JM; L Forbes D; Ellis HR
    Biochemistry; 2018 Jul; 57(30):4469-4477. PubMed ID: 29979040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, expression and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440.
    Rehdorf J; Kirschner A; Bornscheuer UT
    Biotechnol Lett; 2007 Sep; 29(9):1393-8. PubMed ID: 17530181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fre Is the Major Flavin Reductase Supporting Bioluminescence from Vibrio harveyi Luciferase in Escherichia coli.
    Campbell ZT; Baldwin TO
    J Biol Chem; 2009 Mar; 284(13):8322-8. PubMed ID: 19139094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer-Villiger monooxygenase.
    Baek AH; Jeon EY; Lee SM; Park JB
    Biotechnol Bioeng; 2015 May; 112(5):889-95. PubMed ID: 25545273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.