BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24190650)

  • 1. Abdominal aortic aneurysm: from clinical imaging to realistic replicas.
    de Galarreta SR; Aitor C; Antón R; Finol EA
    J Biomech Eng; 2014 Jan; 136(1):014502. PubMed ID: 24190650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic abdominal aortic aneurysm replicas with biaxial material characterization.
    Ruiz de Galarreta S; Antón R; Cazon A; Larraona GS; Finol EA
    Med Eng Phys; 2016 Dec; 38(12):1505-1512. PubMed ID: 27745874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm.
    Reeps C; Gee M; Maier A; Gurdan M; Eckstein HH; Wall WA
    J Vasc Surg; 2010 Mar; 51(3):679-88. PubMed ID: 20206812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk.
    Tierney ÁP; Callanan A; McGloughlin TM
    J Endovasc Ther; 2012 Feb; 19(1):100-14. PubMed ID: 22313210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics.
    Raut SS; Jana A; De Oliveira V; Muluk SC; Finol EA
    J Biomech Eng; 2013 Aug; 135(8):81010. PubMed ID: 23722475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of the Strain Assessment of a Phantom of Abdominal Aortic Aneurysm: Comparison of Results Obtained From Magnetic Resonance Imaging and Stereovision Measurements.
    Wang Y; Joannic D; Juillion P; Monnet A; Delassus P; Lalande A; Fontaine JF
    J Biomech Eng; 2018 Mar; 140(3):. PubMed ID: 29238828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reproducibility of deriving parameters of AAA rupture risk from patient-specific 3D finite element models.
    Hyhlik-Dürr A; Krieger T; Geisbüsch P; Kotelis D; Able T; Böckler D
    J Endovasc Ther; 2011 Jun; 18(3):289-98. PubMed ID: 21679063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of wall stress analysis of abdominal aortic aneurysms using three-dimensional ultrasound.
    Kok AM; Nguyen VL; Speelman L; Brands PJ; Schurink GW; van de Vosse FN; Lopata RG
    J Vasc Surg; 2015 May; 61(5):1175-84. PubMed ID: 25701496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness.
    Scotti CM; Shkolnik AD; Muluk SC; Finol EA
    Biomed Eng Online; 2005 Nov; 4():64. PubMed ID: 16271141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the influence of patient-specific material properties in computational simulations: a case study of a large ruptured abdominal aortic aneurysm.
    Doyle BJ; Callanan A; Grace PA; Kavanagh EG
    Int J Numer Method Biomed Eng; 2013 Feb; 29(2):150-64. PubMed ID: 23345202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical implementation to predict residual strains from the homogeneous stress hypothesis with application to abdominal aortic aneurysms.
    Polzer S; Bursa J; Gasser TC; Staffa R; Vlachovsky R
    Ann Biomed Eng; 2013 Jul; 41(7):1516-27. PubMed ID: 23386030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm.
    Raghavan ML; Vorp DA; Federle MP; Makaroun MS; Webster MW
    J Vasc Surg; 2000 Apr; 31(4):760-9. PubMed ID: 10753284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Methodology for Verifying Abdominal Aortic Aneurysm Wall Stress.
    Ruiz de Galarreta S; Cazón A; Antón R; Finol EA
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27636678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifactorial relationship between 18F-fluoro-deoxy-glucose positron emission tomography signaling and biomechanical properties in unruptured aortic aneurysms.
    Nchimi A; Cheramy-Bien JP; Gasser TC; Namur G; Gomez P; Seidel L; Albert A; Defraigne JO; Labropoulos N; Sakalihasan N
    Circ Cardiovasc Imaging; 2014 Jan; 7(1):82-91. PubMed ID: 24190906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis in asymptomatic, symptomatic, and ruptured abdominal aortic aneurysms: in search of new rupture risk predictors.
    Erhart P; Hyhlik-Dürr A; Geisbüsch P; Kotelis D; Müller-Eschner M; Gasser TC; von Tengg-Kobligk H; Böckler D
    Eur J Vasc Endovasc Surg; 2015 Mar; 49(3):239-45. PubMed ID: 25542592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial stress and nonlinear material behavior in patient-specific AAA wall stress analysis.
    Speelman L; Bosboom EM; Schurink GW; Buth J; Breeuwer M; Jacobs MJ; van de Vosse FN
    J Biomech; 2009 Aug; 42(11):1713-9. PubMed ID: 19447391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association between aneurysm shoulder stress and abdominal aortic aneurysm expansion: a longitudinal follow-up study.
    Li ZY; Sadat U; U-King-Im J; Tang TY; Bowden DJ; Hayes PD; Gillard JH
    Circulation; 2010 Nov; 122(18):1815-22. PubMed ID: 20956212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms.
    Wolters BJ; Rutten MC; Schurink GW; Kose U; de Hart J; van de Vosse FN
    Med Eng Phys; 2005 Dec; 27(10):871-83. PubMed ID: 16157501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models.
    Leung JH; Wright AR; Cheshire N; Crane J; Thom SA; Hughes AD; Xu Y
    Biomed Eng Online; 2006 May; 5():33. PubMed ID: 16712729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prestressing in finite deformation abdominal aortic aneurysm simulation.
    Gee MW; Reeps C; Eckstein HH; Wall WA
    J Biomech; 2009 Aug; 42(11):1732-9. PubMed ID: 19457489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.