These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24190668)

  • 21. Catabolism of cysteine, cystine, cysteinesulfinate, and OTC by isolated perfused rat hindquarter.
    Ensunsa JL; Hirschberger LL; Stipanuk MH
    Am J Physiol; 1993 May; 264(5 Pt 1):E782-9. PubMed ID: 8098909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FURTHER OBSERVATIONS ON THE PRODUCTION OF AMINO ACIDS BY RAT-LIVER MITOCHONDRIA AND OTHER SUBCELLULAR FRACTIONS.
    ALBERTI KG; BARTLEY W
    Biochem J; 1965 Jun; 95(3):641-56. PubMed ID: 14342498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolism of cysteine, cysteinesulfinate and cysteinesulfonate in rats fed adequate and excess levels of sulfur-containing amino acids.
    Stipanuk MH; Rotter MA
    J Nutr; 1984 Aug; 114(8):1426-37. PubMed ID: 6747726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5'-adenylylsulfate reductase from Pseudomonas aeruginosa.
    Tsakraklides G; Martin M; Chalam R; Tarczynski MC; Schmidt A; Leustek T
    Plant J; 2002 Dec; 32(6):879-89. PubMed ID: 12492831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cysteinesulfonate and beta-sulfopyruvate metabolism. Partitioning between decarboxylation, transamination, and reduction pathways.
    Weinstein CL; Griffith OW
    J Biol Chem; 1988 Mar; 263(8):3735-43. PubMed ID: 3346220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and characterization of mitochondrial cysteine aminotransferase from rat liver.
    Ubuka T; Umemura S; Yuasa S; Kinuta M; Watanabe K
    Physiol Chem Phys; 1978; 10(6):483-500. PubMed ID: 754189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dealing with the sulfur part of cysteine: four enzymatic steps degrade l-cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria.
    Höfler S; Lorenz C; Busch T; Brinkkötter M; Tohge T; Fernie AR; Braun HP; Hildebrandt TM
    Physiol Plant; 2016 Jul; 157(3):352-66. PubMed ID: 27105581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cysteine conjugate beta-lyase-dependent biotransformation of the cysteine S-conjugates of the sevoflurane degradation product compound A in human, nonhuman primate, and rat kidney cytosol and mitochondria.
    Iyer RA; Anders MW
    Anesthesiology; 1996 Dec; 85(6):1454-61. PubMed ID: 8968194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies of Sulfate Utilization by Algae. 6. Adenosine-3'-Phosphate-5'-Phosphosulfate (PAPS) as an Intermediate in Thiosulfate Formation From Sulfate by Cell-Free Extracts of Chlorella.
    Hodson RC; Schiff JA; Scarsella AJ; Levinthal M
    Plant Physiol; 1968 Apr; 43(4):563-9. PubMed ID: 16656807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cysteine Metabolism and Oxidative Processes in the Rat Liver and Kidney after Acute and Repeated Cocaine Treatment.
    Kowalczyk-Pachel D; Iciek M; Wydra K; Nowak E; Górny M; Filip M; Włodek L; Lorenc-Koci E
    PLoS One; 2016; 11(1):e0147238. PubMed ID: 26808533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Post-translational regulation of mercaptopyruvate sulfurtransferase via a low redox potential cysteine-sulfenate in the maintenance of redox homeostasis.
    Nagahara N; Katayama A
    J Biol Chem; 2005 Oct; 280(41):34569-76. PubMed ID: 16107337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigations into the effect of glyoxylate decarboxylation and transamination on oxalate formation in the rat.
    Bais R; Rofe AM; Conyers RA
    Nephron; 1991; 57(4):460-9. PubMed ID: 2046830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of cysteinesulfinate on fatty acid-dependent uncoupling: modulation of recoupling by substrates of the aspartate/glutamate antiporter and diethyl pyrocarbonate.
    Samartsev VN; Mokhova EN
    Biochemistry (Mosc); 1997 May; 62(5):495-500. PubMed ID: 9275289
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple forms of rat liver cysteinesulfinate decarboxylase.
    Weinstein CL; Griffith OW
    J Biol Chem; 1987 May; 262(15):7254-63. PubMed ID: 3584115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cysteine metabolism in periportal and perivenous hepatocytes: perivenous cells have greater capacity for glutathione production and taurine synthesis but not for cysteine catabolism.
    Bella DL; Hirschberger LL; Kwon YH; Stipanuk MH
    Amino Acids; 2002; 23(4):453-8. PubMed ID: 12436215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of compartment-specific cysteine synthesis for sulfur homeostasis during H2S exposure in Arabidopsis.
    Birke H; De Kok LJ; Wirtz M; Hell R
    Plant Cell Physiol; 2015 Feb; 56(2):358-67. PubMed ID: 25416292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolism of cysteine in rat hepatocytes. Evidence for cysteinesulphinate-independent pathways.
    Drake MR; De La Rosa J; Stipanuk MH
    Biochem J; 1987 Jun; 244(2):279-86. PubMed ID: 3117038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolism of 3-mercaptopyruvate in rat tissues.
    Kiguchi S
    Acta Med Okayama; 1983 Apr; 37(2):85-91. PubMed ID: 6869067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics of the cysteinesulfinate-forming enzyme system in rat liver.
    Ewetz L; Sörbo B
    Biochim Biophys Acta; 1966 Nov; 128(2):296-305. PubMed ID: 4382020
    [No Abstract]   [Full Text] [Related]  

  • 40. Role of the transsulfuration pathway and of gamma-cystathionase activity in the formation of cysteine and sulfate from methionine in rat hepatocytes.
    Rao AM; Drake MR; Stipanuk MH
    J Nutr; 1990 Aug; 120(8):837-45. PubMed ID: 2116506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.