These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24190739)

  • 1. Methylglyoxal, glyoxalases and the development of diabetic complications.
    Thornalley PJ
    Amino Acids; 1994 Feb; 6(1):15-23. PubMed ID: 24190739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Participation of glyoxalases and methylglyoxal in diabetic complication development].
    Piskorska D; Kopieczna-Grzebieniak E
    Pol Merkur Lekarski; 1998 Jun; 4(24):342-4. PubMed ID: 9771022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: roles for glutathione in both enzymes and implications for diabetic complications.
    Vander Jagt DL; Hassebrook RK; Hunsaker LA; Brown WM; Royer RE
    Chem Biol Interact; 2001 Jan; 130-132(1-3):549-62. PubMed ID: 11306074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased levels of methylglyoxal-metabolizing enzymes in mononuclear and polymorphonuclear cells from insulin-dependent diabetic patients with diabetic complications: aldose reductase, glyoxalase I, and glyoxalase II--a clinical research center study.
    Ratliff DM; Vander Jagt DJ; Eaton RP; Vander Jagt DL
    J Clin Endocrinol Metab; 1996 Feb; 81(2):488-92. PubMed ID: 8636255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications.
    Vander Jagt DL; Robinson B; Taylor KK; Hunsaker LA
    J Biol Chem; 1992 Mar; 267(7):4364-9. PubMed ID: 1537826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The human red blood cell glyoxalase system in diabetes mellitus.
    Thornalley PJ; Hooper NI; Jennings PE; Florkowski CM; Jones AF; Lunec J; Barnett AH
    Diabetes Res Clin Pract; 1989 Aug; 7(2):115-20. PubMed ID: 2776650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of the glyoxalase system in streptozotocin-induced diabetic rats. Effect of the aldose reductase inhibitor Statil.
    Phillips SA; Mirrlees D; Thornalley PJ
    Biochem Pharmacol; 1993 Sep; 46(5):805-11. PubMed ID: 8373434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylglyoxal concentration and glyoxalase activities in the human lens.
    Haik GM; Lo TW; Thornalley PJ
    Exp Eye Res; 1994 Oct; 59(4):497-500. PubMed ID: 7859825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glyoxalase in diabetes, obesity and related disorders.
    Rabbani N; Thornalley PJ
    Semin Cell Dev Biol; 2011 May; 22(3):309-17. PubMed ID: 21335095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The role of methylglyoxal metabolism in type-2 diabetes and its complications].
    Kender Z; Torzsa P; Grolmusz K V; Patócs A; Lichthammer A; Veresné Bálint M; Rácz K; Reismann P
    Orv Hetil; 2012 Apr; 153(15):574-85. PubMed ID: 22472358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reaction of methylglyoxal with aminoguanidine under physiological conditions and prevention of methylglyoxal binding to plasma proteins.
    Lo TW; Selwood T; Thornalley PJ
    Biochem Pharmacol; 1994 Nov; 48(10):1865-70. PubMed ID: 7986197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From methylglyoxal to pyruvate: a genome-wide study for the identification of glyoxalases and D-lactate dehydrogenases in Sorghum bicolor.
    Bhowal B; Singla-Pareek SL; Sopory SK; Kaur C
    BMC Genomics; 2020 Feb; 21(1):145. PubMed ID: 32041545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The role of methylglyoxal in the development of diabetic complications].
    Piskorska D; Kopieczna-Grzebieniak E
    Postepy Hig Med Dosw; 1997; 51(4):457-71. PubMed ID: 9446106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of Glyoxalase 1 Induces Compensatory Mechanism to Achieve Dicarbonyl Detoxification in Mammalian Schwann Cells.
    Morgenstern J; Fleming T; Schumacher D; Eckstein V; Freichel M; Herzig S; Nawroth P
    J Biol Chem; 2017 Feb; 292(8):3224-3238. PubMed ID: 27956549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments.
    Rabbani N; Xue M; Thornalley PJ
    Clin Sci (Lond); 2016 Oct; 130(19):1677-96. PubMed ID: 27555612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical origins of lactaldehyde and hydroxyacetone in Methanocaldococcus jannaschii.
    White RH
    Biochemistry; 2008 Apr; 47(17):5037-46. PubMed ID: 18363381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyridoxamine inhibits maillard reactions in diabetic rat lenses.
    Padival S; Nagaraj RH
    Ophthalmic Res; 2006; 38(5):294-302. PubMed ID: 16974131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylglyoxal stress, the glyoxalase system, and diabetic chronic kidney disease.
    Hanssen NMJ; Stehouwer CDA; Schalkwijk CG
    Curr Opin Nephrol Hypertens; 2019 Jan; 28(1):26-33. PubMed ID: 30320620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview on the role of methylglyoxal and glyoxalases in plants.
    Yadav SK; Singla-Pareek SL; Sopory SK
    Drug Metabol Drug Interact; 2008; 23(1-2):51-68. PubMed ID: 18533364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dicarbonyl stress in clinical obesity.
    Masania J; Malczewska-Malec M; Razny U; Goralska J; Zdzienicka A; Kiec-Wilk B; Gruca A; Stancel-Mozwillo J; Dembinska-Kiec A; Rabbani N; Thornalley PJ
    Glycoconj J; 2016 Aug; 33(4):581-9. PubMed ID: 27338619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.