These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 24190931)
1. Normalization and standardization of electronic health records for high-throughput phenotyping: the SHARPn consortium. Pathak J; Bailey KR; Beebe CE; Bethard S; Carrell DC; Chen PJ; Dligach D; Endle CM; Hart LA; Haug PJ; Huff SM; Kaggal VC; Li D; Liu H; Marchant K; Masanz J; Miller T; Oniki TA; Palmer M; Peterson KJ; Rea S; Savova GK; Stancl CR; Sohn S; Solbrig HR; Suesse DB; Tao C; Taylor DP; Westberg L; Wu S; Zhuo N; Chute CG J Am Med Inform Assoc; 2013 Dec; 20(e2):e341-8. PubMed ID: 24190931 [TBL] [Abstract][Full Text] [Related]
2. Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: the SHARPn project. Rea S; Pathak J; Savova G; Oniki TA; Westberg L; Beebe CE; Tao C; Parker CG; Haug PJ; Huff SM; Chute CG J Biomed Inform; 2012 Aug; 45(4):763-71. PubMed ID: 22326800 [TBL] [Abstract][Full Text] [Related]
3. Clinical element models in the SHARPn consortium. Oniki TA; Zhuo N; Beebe CE; Liu H; Coyle JF; Parker CG; Solbrig HR; Marchant K; Kaggal VC; Chute CG; Huff SM J Am Med Inform Assoc; 2016 Mar; 23(2):248-56. PubMed ID: 26568604 [TBL] [Abstract][Full Text] [Related]
4. Modeling and executing electronic health records driven phenotyping algorithms using the NQF Quality Data Model and JBoss® Drools Engine. Li D; Endle CM; Murthy S; Stancl C; Suesse D; Sottara D; Huff SM; Chute CG; Pathak J AMIA Annu Symp Proc; 2012; 2012():532-41. PubMed ID: 23304325 [TBL] [Abstract][Full Text] [Related]
5. A method for cohort selection of cardiovascular disease records from an electronic health record system. Abrahão MTF; Nobre MRC; Gutierrez MA Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342 [TBL] [Abstract][Full Text] [Related]
6. Developing a FHIR-based EHR phenotyping framework: A case study for identification of patients with obesity and multiple comorbidities from discharge summaries. Hong N; Wen A; Stone DJ; Tsuji S; Kingsbury PR; Rasmussen LV; Pacheco JA; Adekkanattu P; Wang F; Luo Y; Pathak J; Liu H; Jiang G J Biomed Inform; 2019 Nov; 99():103310. PubMed ID: 31622801 [TBL] [Abstract][Full Text] [Related]
7. An evaluation of the NQF Quality Data Model for representing Electronic Health Record driven phenotyping algorithms. Thompson WK; Rasmussen LV; Pacheco JA; Peissig PL; Denny JC; Kho AN; Miller A; Pathak J AMIA Annu Symp Proc; 2012; 2012():911-20. PubMed ID: 23304366 [TBL] [Abstract][Full Text] [Related]
8. Scalable and High-Throughput Execution of Clinical Quality Measures from Electronic Health Records using MapReduce and the JBoss® Drools Engine. Peterson KJ; Pathak J AMIA Annu Symp Proc; 2014; 2014():1864-73. PubMed ID: 25954459 [TBL] [Abstract][Full Text] [Related]
9. Leveraging electronic healthcare record standards and semantic web technologies for the identification of patient cohorts. Fernández-Breis JT; Maldonado JA; Marcos M; Legaz-García Mdel C; Moner D; Torres-Sospedra J; Esteban-Gil A; Martínez-Salvador B; Robles M J Am Med Inform Assoc; 2013 Dec; 20(e2):e288-96. PubMed ID: 23934950 [TBL] [Abstract][Full Text] [Related]
10. The SHARPn project on secondary use of Electronic Medical Record data: progress, plans, and possibilities. Chute CG; Pathak J; Savova GK; Bailey KR; Schor MI; Hart LA; Beebe CE; Huff SM AMIA Annu Symp Proc; 2011; 2011():248-56. PubMed ID: 22195076 [TBL] [Abstract][Full Text] [Related]
11. A Standards-based Semantic Metadata Repository to Support EHR-driven Phenotype Authoring and Execution. Jiang G; Solbrig HR; Kiefer R; Rasmussen LV; Mo H; Speltz P; Thompson WK; Denny JC; Chute CG; Pathak J Stud Health Technol Inform; 2015; 216():1098. PubMed ID: 26262397 [TBL] [Abstract][Full Text] [Related]
12. CER Hub: An informatics platform for conducting comparative effectiveness research using multi-institutional, heterogeneous, electronic clinical data. Hazlehurst BL; Kurtz SE; Masica A; Stevens VJ; McBurnie MA; Puro JE; Vijayadeva V; Au DH; Brannon ED; Sittig DF Int J Med Inform; 2015 Oct; 84(10):763-73. PubMed ID: 26138036 [TBL] [Abstract][Full Text] [Related]
13. Development and application of a high throughput natural language processing architecture to convert all clinical documents in a clinical data warehouse into standardized medical vocabularies. Afshar M; Dligach D; Sharma B; Cai X; Boyda J; Birch S; Valdez D; Zelisko S; Joyce C; Modave F; Price R J Am Med Inform Assoc; 2019 Nov; 26(11):1364-1369. PubMed ID: 31145455 [TBL] [Abstract][Full Text] [Related]
14. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing. Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101 [TBL] [Abstract][Full Text] [Related]
15. Developing a data element repository to support EHR-driven phenotype algorithm authoring and execution. Jiang G; Kiefer RC; Rasmussen LV; Solbrig HR; Mo H; Pacheco JA; Xu J; Montague E; Thompson WK; Denny JC; Chute CG; Pathak J J Biomed Inform; 2016 Aug; 62():232-42. PubMed ID: 27392645 [TBL] [Abstract][Full Text] [Related]
16. A numerical similarity approach for using retired Current Procedural Terminology (CPT) codes for electronic phenotyping in the Scalable Collaborative Infrastructure for a Learning Health System (SCILHS). Klann JG; Phillips LC; Turchin A; Weiler S; Mandl KD; Murphy SN BMC Med Inform Decis Mak; 2015 Dec; 15():104. PubMed ID: 26655696 [TBL] [Abstract][Full Text] [Related]
17. Challenges in clinical natural language processing for automated disorder normalization. Leaman R; Khare R; Lu Z J Biomed Inform; 2015 Oct; 57():28-37. PubMed ID: 26187250 [TBL] [Abstract][Full Text] [Related]
18. Terminology Services: Standard Terminologies to Control Health Vocabulary. González Bernaldo de Quirós F; Otero C; Luna D Yearb Med Inform; 2018 Aug; 27(1):227-233. PubMed ID: 29681027 [TBL] [Abstract][Full Text] [Related]
19. Programming techniques for improving rule readability for rule-based information extraction natural language processing pipelines of unstructured and semi-structured medical texts. Ladas N; Borchert F; Franz S; Rehberg A; Strauch N; Sommer KK; Marschollek M; Gietzelt M Health Informatics J; 2023; 29(2):14604582231164696. PubMed ID: 37068028 [TBL] [Abstract][Full Text] [Related]
20. [A customized method for information extraction from unstructured text data in the electronic medical records]. Bao XY; Huang WJ; Zhang K; Jin M; Li Y; Niu CZ Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):256-263. PubMed ID: 29643524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]