These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24191007)

  • 1. Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences.
    Cardon ZG; Stark JM; Herron PM; Rasmussen JA
    Proc Natl Acad Sci U S A; 2013 Nov; 110(47):18988-93. PubMed ID: 24191007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species.
    Armas C; Kim JH; Bleby TM; Jackson RB
    Oecologia; 2012 Jan; 168(1):11-22. PubMed ID: 21766189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal hydraulic redistribution prevents the loss of root conductivity during drought.
    Prieto I; Ryel RJ
    Tree Physiol; 2014 Jan; 34(1):39-48. PubMed ID: 24436338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydraulic redistribution affects modeled carbon cycling via soil microbial activity and suppressed fire.
    Fu C; Wang G; Bible K; Goulden ML; Saleska SR; Scott RL; Cardon ZG
    Glob Chang Biol; 2018 Aug; 24(8):3472-3485. PubMed ID: 29654607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The invasive annual cheatgrass increases nitrogen availability in 24-year-old replicated field plots.
    Stark JM; Norton JM
    Oecologia; 2015 Mar; 177(3):799-809. PubMed ID: 25304974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water conservation in Artemisia tridentata through redistribution of precipitation.
    Ryel RJ; Leffler AJ; Peek MS; Ivans CY; Caldwell MM
    Oecologia; 2004 Oct; 141(2):335-45. PubMed ID: 14614619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydraulic lift: consequences of water efflux from the roots of plants.
    Caldwell MM; Dawson TE; Richards JH
    Oecologia; 1998 Jan; 113(2):151-161. PubMed ID: 28308192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species.
    Saetre P; Stark JM
    Oecologia; 2005 Jan; 142(2):247-60. PubMed ID: 15490245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydraulic lift promotes selective root foraging in nutrient-rich soil patches.
    Prieto IN; Armas C; Pugnaire FI
    Funct Plant Biol; 2012 Sep; 39(9):804-812. PubMed ID: 32480831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do hydraulic redistribution and nocturnal transpiration facilitate nutrient acquisition in Aspalathus linearis?
    Matimati I; Verboom GA; Cramer MD
    Oecologia; 2014 Aug; 175(4):1129-42. PubMed ID: 24972698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil moisture redistribution as a mechanism of facilitation in savanna tree-shrub clusters.
    Zou CB; Barnes PW; Archer S; McMurtry CR
    Oecologia; 2005 Aug; 145(1):32-40. PubMed ID: 15942764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions.
    Dawson TE
    Oecologia; 1993 Oct; 95(4):565-574. PubMed ID: 28313298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydraulic lift and its influence on the water content of the rhizosphere: an example from sugar maple, Acer saccharum.
    Emerman SH; Dawson TE
    Oecologia; 1996 Oct; 108(2):273-278. PubMed ID: 28307839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen cycling in canopy soils of tropical montane forests responds rapidly to indirect N and P fertilization.
    Matson AL; Corre MD; Veldkamp E
    Glob Chang Biol; 2014 Dec; 20(12):3802-13. PubMed ID: 24965673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Net carbon exchange and evapotranspiration in postfire and intact sagebrush communities in the Great Basin.
    Prater MR; Obrist D; Arnone JA; DeLucia EH
    Oecologia; 2006 Jan; 146(4):595-607. PubMed ID: 16151860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mid-latitude shrub steppe plant communities: climate change consequences for soil water resources.
    Palmquist KA; Schlaepfer DR; Bradford JB; Lauenroth WK
    Ecology; 2016 Sep; 97(9):2342-2354. PubMed ID: 27859085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil.
    Bauerle TL; Richards JH; Smart DR; Eissenstat DM
    Plant Cell Environ; 2008 Feb; 31(2):177-86. PubMed ID: 18028280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species-specific patterns of hydraulic lift in co-occurring adult trees and grasses in a sandhill community.
    Espeleta JF; West JB; Donovan LA
    Oecologia; 2004 Feb; 138(3):341-9. PubMed ID: 14689298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange.
    Hao GY; Jones TJ; Luton C; Zhang YJ; Manzane E; Scholz FG; Bucci SJ; Cao KF; Goldstein G
    Tree Physiol; 2009 May; 29(5):697-705. PubMed ID: 19324702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of foundation species increases population growth of exotic forbs in sagebrush steppe.
    Prevéy JS; Germino MJ; Huntly NJ
    Ecol Appl; 2010 Oct; 20(7):1890-902. PubMed ID: 21049877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.