BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24191139)

  • 1. Cationic polymers inhibit the conductance of lysenin channels.
    Fologea D; Krueger E; Rossland S; Bryant S; Foss W; Clark T
    ScientificWorldJournal; 2013; 2013():316758. PubMed ID: 24191139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporary Membrane Permeabilization via the Pore-Forming Toxin Lysenin.
    Shrestha N; Thomas CA; Richtsmeier D; Bogard A; Hermann R; Walker M; Abatchev G; Brown RJ; Fologea D
    Toxins (Basel); 2020 May; 12(5):. PubMed ID: 32456013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic sensing of Angiotensin II with lysenin channels.
    Shrestha N; Bryant SL; Thomas C; Richtsmeier D; Pu X; Tinker J; Fologea D
    Sci Rep; 2017 May; 7(1):2448. PubMed ID: 28550293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for the hysteresis observed in gating of lysenin channels.
    Krueger E; Al Faouri R; Fologea D; Henry R; Straub D; Salamo G
    Biophys Chem; 2013 Dec; 184():126-30. PubMed ID: 24075493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purinergic control of lysenin's transport and voltage-gating properties.
    Bryant S; Shrestha N; Carnig P; Kosydar S; Belzeski P; Hanna C; Fologea D
    Purinergic Signal; 2016 Sep; 12(3):549-59. PubMed ID: 27318938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZnO nanoparticles modulate the ionic transport and voltage regulation of lysenin nanochannels.
    Bryant SL; Eixenberger JE; Rossland S; Apsley H; Hoffmann C; Shrestha N; McHugh M; Punnoose A; Fologea D
    J Nanobiotechnology; 2017 Dec; 15(1):90. PubMed ID: 29246155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the Voltage Regulation Mechanism of the Pore-Forming Toxin Lysenin.
    Bryant SL; Clark T; Thomas CA; Ware KS; Bogard A; Calzacorta C; Prather D; Fologea D
    Toxins (Basel); 2018 Aug; 10(8):. PubMed ID: 30126104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramembrane congestion effects on lysenin channel voltage-induced gating.
    Krueger E; Bryant S; Shrestha N; Clark T; Hanna C; Pink D; Fologea D
    Eur Biophys J; 2016 Mar; 45(2):187-94. PubMed ID: 26695013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivalent ions control the transport through lysenin channels.
    Fologea D; Krueger E; Al Faori R; Lee R; Mazur YI; Henry R; Arnold M; Salamo GJ
    Biophys Chem; 2010 Nov; 152(1-3):40-5. PubMed ID: 20724059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled gating of lysenin pores.
    Fologea D; Krueger E; Lee R; Naglak M; Mazur Y; Henry R; Salamo G
    Biophys Chem; 2010 Jan; 146(1):25-9. PubMed ID: 19854558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential analytical applications of lysenin channels for detection of multivalent ions.
    Fologea D; Al Faori R; Krueger E; Mazur YI; Kern M; Williams M; Mortazavi A; Henry R; Salamo GJ
    Anal Bioanal Chem; 2011 Oct; 401(6):1871-9. PubMed ID: 21818682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysenin Channels as Sensors for Ions and Molecules.
    Bogard A; Abatchev G; Hutchinson Z; Ward J; Finn PW; McKinney F; Fologea D
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33120957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bi-stability, hysteresis, and memory of voltage-gated lysenin channels.
    Fologea D; Krueger E; Mazur YI; Stith C; Okuyama Y; Henry R; Salamo GJ
    Biochim Biophys Acta; 2011 Dec; 1808(12):2933-9. PubMed ID: 21945404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heparin influence on alpha-staphylotoxin formed channel.
    Krasilnikov OV; Merzlyak PG; Yuldasheva LN; Rodrigues CG; Nogueira RA
    Biochim Biophys Acta; 1999 Feb; 1417(1):167-82. PubMed ID: 10076045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of Voltage-Gating and Hysteresis of Lysenin Channels by Cu
    Bogard A; Finn PW; Smith AR; Flacau IM; Whiting R; Fologea D
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37629177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high conductance cationic channel from Phaseolus vulgaris roots incorporated into planar lipid bilayers.
    Balleza D; Gómez-Lagunas F; Sánchez F; Quinto C
    Arch Biochem Biophys; 2005 Jun; 438(1):88-92. PubMed ID: 15885652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Activity of toxins produced by Pseudomonas syringae pv. syringae in model and cell membranes].
    Gur'nev FA; Kaulin IuA; Tikhomirova AV; Wangspa R; Takemoto D; Malev VV; Shchagina LV
    Tsitologiia; 2002; 44(3):296-304. PubMed ID: 12094768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure function relationships in diphtheria toxin channels: II. A residue responsible for the channel's dependence on trans pH.
    Mindell JA; Silverman JA; Collier RJ; Finkelstein A
    J Membr Biol; 1994 Jan; 137(1):29-44. PubMed ID: 7516433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Potential-dependent Cation Selective Ion Channels Formed by Peroxiredoxin 6 in the Lipid Bilayer].
    Grigoriev PA; Sharapov MG; Novoselov VI
    Biofizika; 2015; 60(4):696-9. PubMed ID: 26394468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.