These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
583 related articles for article (PubMed ID: 24191452)
1. A comparison of disinfection by-products formation during sequential or simultaneous disinfection of surface waters with chlorine dioxide and chlor(am)ine. Shi Y; Ling W; Qiang Z Environ Technol; 2013; 34(9-12):1191-8. PubMed ID: 24191452 [TBL] [Abstract][Full Text] [Related]
2. Formation of disinfection byproducts upon chlorine dioxide preoxidation followed by chlorination or chloramination of natural organic matter. Yang X; Guo W; Lee W Chemosphere; 2013 Jun; 91(11):1477-85. PubMed ID: 23312737 [TBL] [Abstract][Full Text] [Related]
3. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO Padhi RK; Subramanian S; Satpathy KK Chemosphere; 2019 Mar; 218():540-550. PubMed ID: 30500715 [TBL] [Abstract][Full Text] [Related]
4. Impact of ClO Yao D; Chu W; Bond T; Ding S; Chen S Chemosphere; 2018 Apr; 196():25-34. PubMed ID: 29289848 [TBL] [Abstract][Full Text] [Related]
5. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination. Chu W; Gao N; Yin D; Krasner SW J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310 [TBL] [Abstract][Full Text] [Related]
6. Impact of combining chlorine dioxide and chlorine on DBP formation in simulated indoor swimming pools. Kim D; Ates N; Kaplan Bekaroglu SS; Selbes M; Karanfil T J Environ Sci (China); 2017 Aug; 58():155-162. PubMed ID: 28774604 [TBL] [Abstract][Full Text] [Related]
7. Removal of estrogens through water disinfection processes and formation of by-products. Pereira RO; Postigo C; de Alda ML; Daniel LA; Barceló D Chemosphere; 2011 Feb; 82(6):789-99. PubMed ID: 21087787 [TBL] [Abstract][Full Text] [Related]
8. Formation of iodinated disinfection by-products during oxidation of iodide-containing waters with chlorine dioxide. Ye T; Xu B; Lin YL; Hu CY; Lin L; Zhang TY; Gao NY Water Res; 2013 Jun; 47(9):3006-14. PubMed ID: 23561492 [TBL] [Abstract][Full Text] [Related]
9. Advantages of a ClO Ye B; Cang Y; Li J; Zhang X Environ Geochem Health; 2019 Jun; 41(3):1545-1557. PubMed ID: 30604306 [TBL] [Abstract][Full Text] [Related]
10. Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate. Yang X; Guo W; Zhang X; Chen F; Ye T; Liu W Water Res; 2013 Oct; 47(15):5856-64. PubMed ID: 23906778 [TBL] [Abstract][Full Text] [Related]
11. [Disinfection by-products reduction of combined disinfection by chlorine and monochloramines in distribution system]. Liu J; Chen C; Zhang XJ Huan Jing Ke Xue; 2009 Sep; 30(9):2538-42. PubMed ID: 19927800 [TBL] [Abstract][Full Text] [Related]
12. Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide. Richardson SD; Thruston AD; Rav-Acha C; Groisman L; Popilevsky I; Juraev O; Glezer V; McKague AB; Plewa MJ; Wagner ED Environ Sci Technol; 2003 Sep; 37(17):3782-93. PubMed ID: 12967096 [TBL] [Abstract][Full Text] [Related]
13. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants. Hua G; Reckhow DA Water Res; 2007 Apr; 41(8):1667-78. PubMed ID: 17360020 [TBL] [Abstract][Full Text] [Related]
14. Formation, speciation and toxicity of CX Luo X; Zhu S; Wang J; Sun J; Bu L; Zhou S Ecotoxicol Environ Saf; 2020 Mar; 191():110247. PubMed ID: 32004943 [TBL] [Abstract][Full Text] [Related]
15. [Effects of different pre-oxidants on DBPs formation potential by chlorination and chloramination of Yangtze River raw water]. Tian FX; Xu B; Rong R; Chen YY; Zhang TY; Zhu HZ Huan Jing Ke Xue; 2014 Feb; 35(2):605-10. PubMed ID: 24812954 [TBL] [Abstract][Full Text] [Related]
16. A field study evaluation for mitigating biofouling with chlorine dioxide or chlorine integrated with UV disinfection. Rand JL; Hofmann R; Alam MZ; Chauret C; Cantwell R; Andrews RC; Gagnon GA Water Res; 2007 May; 41(9):1939-48. PubMed ID: 17383708 [TBL] [Abstract][Full Text] [Related]
17. Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide. Guo W; Shan Y; Yang X J Hazard Mater; 2014 Jan; 264():91-7. PubMed ID: 24280616 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine. Bougeard CM; Goslan EH; Jefferson B; Parsons SA Water Res; 2010 Feb; 44(3):729-40. PubMed ID: 19910014 [TBL] [Abstract][Full Text] [Related]
19. Characterization of halogenated DBPs and identification of new DBPs trihalomethanols in chlorine dioxide treated drinking water with multiple extractions. Han J; Zhang X; Liu J; Zhu X; Gong T J Environ Sci (China); 2017 Aug; 58():83-92. PubMed ID: 28774629 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of DBPs formation from SMPs exposed to chlorine, chloramine and ozone. Zhang B; Xian Q; Lu J; Gong T; Li A; Feng J J Water Health; 2017 Apr; 15(2):185-195. PubMed ID: 28362300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]