BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 24191452)

  • 1. A comparison of disinfection by-products formation during sequential or simultaneous disinfection of surface waters with chlorine dioxide and chlor(am)ine.
    Shi Y; Ling W; Qiang Z
    Environ Technol; 2013; 34(9-12):1191-8. PubMed ID: 24191452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of disinfection byproducts upon chlorine dioxide preoxidation followed by chlorination or chloramination of natural organic matter.
    Yang X; Guo W; Lee W
    Chemosphere; 2013 Jun; 91(11):1477-85. PubMed ID: 23312737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO
    Padhi RK; Subramanian S; Satpathy KK
    Chemosphere; 2019 Mar; 218():540-550. PubMed ID: 30500715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of ClO
    Yao D; Chu W; Bond T; Ding S; Chen S
    Chemosphere; 2018 Apr; 196():25-34. PubMed ID: 29289848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of combining chlorine dioxide and chlorine on DBP formation in simulated indoor swimming pools.
    Kim D; Ates N; Kaplan Bekaroglu SS; Selbes M; Karanfil T
    J Environ Sci (China); 2017 Aug; 58():155-162. PubMed ID: 28774604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of estrogens through water disinfection processes and formation of by-products.
    Pereira RO; Postigo C; de Alda ML; Daniel LA; Barceló D
    Chemosphere; 2011 Feb; 82(6):789-99. PubMed ID: 21087787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of iodinated disinfection by-products during oxidation of iodide-containing waters with chlorine dioxide.
    Ye T; Xu B; Lin YL; Hu CY; Lin L; Zhang TY; Gao NY
    Water Res; 2013 Jun; 47(9):3006-14. PubMed ID: 23561492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advantages of a ClO
    Ye B; Cang Y; Li J; Zhang X
    Environ Geochem Health; 2019 Jun; 41(3):1545-1557. PubMed ID: 30604306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate.
    Yang X; Guo W; Zhang X; Chen F; Ye T; Liu W
    Water Res; 2013 Oct; 47(15):5856-64. PubMed ID: 23906778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Disinfection by-products reduction of combined disinfection by chlorine and monochloramines in distribution system].
    Liu J; Chen C; Zhang XJ
    Huan Jing Ke Xue; 2009 Sep; 30(9):2538-42. PubMed ID: 19927800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide.
    Richardson SD; Thruston AD; Rav-Acha C; Groisman L; Popilevsky I; Juraev O; Glezer V; McKague AB; Plewa MJ; Wagner ED
    Environ Sci Technol; 2003 Sep; 37(17):3782-93. PubMed ID: 12967096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants.
    Hua G; Reckhow DA
    Water Res; 2007 Apr; 41(8):1667-78. PubMed ID: 17360020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation, speciation and toxicity of CX
    Luo X; Zhu S; Wang J; Sun J; Bu L; Zhou S
    Ecotoxicol Environ Saf; 2020 Mar; 191():110247. PubMed ID: 32004943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of different pre-oxidants on DBPs formation potential by chlorination and chloramination of Yangtze River raw water].
    Tian FX; Xu B; Rong R; Chen YY; Zhang TY; Zhu HZ
    Huan Jing Ke Xue; 2014 Feb; 35(2):605-10. PubMed ID: 24812954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A field study evaluation for mitigating biofouling with chlorine dioxide or chlorine integrated with UV disinfection.
    Rand JL; Hofmann R; Alam MZ; Chauret C; Cantwell R; Andrews RC; Gagnon GA
    Water Res; 2007 May; 41(9):1939-48. PubMed ID: 17383708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide.
    Guo W; Shan Y; Yang X
    J Hazard Mater; 2014 Jan; 264():91-7. PubMed ID: 24280616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine.
    Bougeard CM; Goslan EH; Jefferson B; Parsons SA
    Water Res; 2010 Feb; 44(3):729-40. PubMed ID: 19910014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of halogenated DBPs and identification of new DBPs trihalomethanols in chlorine dioxide treated drinking water with multiple extractions.
    Han J; Zhang X; Liu J; Zhu X; Gong T
    J Environ Sci (China); 2017 Aug; 58():83-92. PubMed ID: 28774629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of DBPs formation from SMPs exposed to chlorine, chloramine and ozone.
    Zhang B; Xian Q; Lu J; Gong T; Li A; Feng J
    J Water Health; 2017 Apr; 15(2):185-195. PubMed ID: 28362300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.