These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 24191453)

  • 1. Polyaluminium chloride as an alternative to alum for the direct filtration of drinking water.
    Zarchi I; Friedler E; Rebhun M
    Environ Technol; 2013; 34(9-12):1199-209. PubMed ID: 24191453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coagulation/flocculation of dye-containing solutions using polyaluminium chloride and alum.
    Zonoozi MH; Moghaddam MR; Arami M
    Water Sci Technol; 2009; 59(7):1343-51. PubMed ID: 19381000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants.
    Kimura M; Matsui Y; Kondo K; Ishikawa TB; Matsushita T; Shirasaki N
    Water Res; 2013 Apr; 47(6):2075-84. PubMed ID: 23422138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of coagulant species and mechanisms on floc characteristics and filterability.
    Jiao R; Fabris R; Chow CWK; Drikas M; van Leeuwen J; Wang D
    Chemosphere; 2016 May; 150():211-218. PubMed ID: 26901478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influential factors of formation kinetics of flocs produced by water treatment coagulants.
    Wu C; Wang L; Hu B; Ye J
    J Environ Sci (China); 2013 May; 25(5):1015-22. PubMed ID: 24218833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Al(III) speciation on coagulation of highly turbid water.
    Lin JL; Huang C; Pan JR; Wang D
    Chemosphere; 2008 May; 72(2):189-96. PubMed ID: 18331755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Floc morphology and cyclic shearing recovery: comparison of alum and polyaluminum chloride coagulants.
    McCurdy K; Carlson K; Gregory D
    Water Res; 2004 Jan; 38(2):486-94. PubMed ID: 14675661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The application of novel coagulant reagent (polyaluminium silicate chloride) for the post-treatment of landfill leachates.
    Tzoupanos ND; Zouboulis AI; Zhao YC
    Chemosphere; 2008 Oct; 73(5):729-36. PubMed ID: 18678391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate ion in raw water affects performance of high-basicity PACl coagulants produced by Al(OH)
    Chen Y; Nakazawa Y; Matsui Y; Shirasaki N; Matsushita T
    Water Res; 2020 Sep; 183():116093. PubMed ID: 32645580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterisation of polyaluminium silicate chloride coagulant.
    Song YH; Luan ZK; Tang HX
    Environ Technol; 2003 Mar; 24(3):319-27. PubMed ID: 12703857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pilot testing of dissolved air flotation (DAF) in a highly effective coagulation-flocculation integrated (FRD) system.
    Wang Y; Guo J; Tang H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Jan; 37(1):95-111. PubMed ID: 11846273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influencing factors and mechanism of arsenic removal during the aluminum coagulation process].
    Chen GX; Hu CZ; Zhu LF; Tong HQ
    Huan Jing Ke Xue; 2013 Apr; 34(4):1386-91. PubMed ID: 23798119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The coagulation characteristics of humic acid by using acid-soluble chitosan, water-soluble chitosan, and chitosan coagulant mixtures.
    Chen CY; Wu CY; Chung YC
    Environ Technol; 2015; 36(9-12):1141-6. PubMed ID: 25362971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breakage and regrowth of flocs formed by sweep coagulation using additional coagulant of poly aluminium chloride and non-ionic polyacrylamide.
    Nan J; Yao M; Chen T; Li S; Wang Z; Feng G
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16336-48. PubMed ID: 27155836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of coagulation pretreatment of produced water from natural gas well by polyaluminium chloride and polyferric sulphate coagulants.
    Zhai J; Huang Z; Rahaman MH; Li Y; Mei L; Ma H; Hu X; Xiao H; Luo Z; Wang K
    Environ Technol; 2017 May; 38(10):1200-1210. PubMed ID: 27460889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of coagulation performance and floc properties using a novel zirconium coagulant against traditional ferric and alum coagulants.
    Jarvis P; Sharp E; Pidou M; Molinder R; Parsons SA; Jefferson B
    Water Res; 2012 Sep; 46(13):4179-87. PubMed ID: 22627114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of compound bioflocculant on coagulation performance and floc properties for dye removal.
    Huang X; Bo X; Zhao Y; Gao B; Wang Y; Sun S; Yue Q; Li Q
    Bioresour Technol; 2014 Aug; 165():116-21. PubMed ID: 24656485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of chitosan as a coagulant in the pre-treatment of turbid sea water.
    Altaher H
    J Hazard Mater; 2012 Sep; 233-234():97-102. PubMed ID: 22819482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of two-stage coagulant addition on coagulation-ultrafiltration process for treatment of humic-rich water.
    Liu T; Chen ZL; Yu WZ; Shen JM; Gregory J
    Water Res; 2011 Aug; 45(14):4260-8. PubMed ID: 21704354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical coagulation of greywater: modelling using artificial neural networks.
    Vinitha EV; Mansoor Ahammed M; Gadekar MR
    Water Sci Technol; 2018 Jul; 2017(3):869-877. PubMed ID: 30016304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.