These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24191495)

  • 1. Comparative assessment of three ligninolytic fungi for removal of phenolic endocrine disruptors from freshwaters and sediments.
    Loffredo E; Castellana G; Traversa A; Senesi N
    Environ Technol; 2013; 34(9-12):1601-8. PubMed ID: 24191495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodecontamination of water from bisphenol A using ligninolytic fungi and the modulation role of humic acids.
    Loffredo E; Traversa A; Senesi N
    Ecotoxicol Environ Saf; 2012 May; 79():288-293. PubMed ID: 22305120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodecontamination of aqueous substrates from bisphenol A by ligninolytic fungi.
    Traversa A; Loffredo E; Gattullo CE; Senesi N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(10):1407-12. PubMed ID: 22571528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decontamination of a municipal landfill leachate from endocrine disruptors using a combined sorption/bioremoval approach.
    Loffredo E; Castellana G; Senesi N
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):2654-62. PubMed ID: 24122163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of phenolic endocrine disruptors by Portulaca oleracea.
    Imai S; Shiraishi A; Gamo K; Watanabe I; Okuhata H; Miyasaka H; Ikeda K; Bamba T; Hirata K
    J Biosci Bioeng; 2007 May; 103(5):420-6. PubMed ID: 17609156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bisphenol A degradation in water by ligninolytic enzymes.
    Gassara F; Brar SK; Verma M; Tyagi RD
    Chemosphere; 2013 Aug; 92(10):1356-60. PubMed ID: 23668961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of a combination of endocrine disruptors from aqueous systems by seedlings of radish and ryegrass.
    Gattullo CE; Cunha BB; Rosa AH; Loffredo E
    Environ Technol; 2013; 34(21-24):3129-36. PubMed ID: 24617071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Removal of EDCs(BPA) by ultrafiltration and impact factors].
    Wang L; Dong BZ; Gao NY
    Huan Jing Ke Xue; 2007 Feb; 28(2):329-34. PubMed ID: 17489192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal capacity and pathways of phenolic endocrine disruptors in an estuarine wetland of natural reed bed.
    Yang L; Li Z; Zou L; Gao H
    Chemosphere; 2011 Apr; 83(3):233-9. PubMed ID: 21269659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic degradation of bisphenol-A and its derivatives in river sediment.
    Chang BV; Liu JH; Liao CS
    Environ Technol; 2014; 35(1-4):416-24. PubMed ID: 24600882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal and spatial distribution of nonylphenol in Shihwa Lake, Korea.
    Li Z; Li D; Oh JR; Je JG
    Chemosphere; 2004 Aug; 56(6):611-8. PubMed ID: 15212903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Direct removal of typical endocrine disruptors from heavily polluted river water by ozonation].
    Wang LY; Zhang XH; Song QW
    Huan Jing Ke Xue; 2011 May; 32(5):1357-63. PubMed ID: 21780591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of the efficiency of low-cost adsorbents and ligninolytic fungi to remove a combination of xenoestrogens and pesticides from a landfill leachate and abate its phytotoxicity.
    Loffredo E; Castellana G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(9):958-70. PubMed ID: 26061209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption behavior of bisphenol A on marine sediments.
    Xu X; Wang Y; Li X
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(3):239-46. PubMed ID: 18205054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic biodegradation of bisphenol A in river sediment and associated bacterial community change.
    Yang Y; Wang Z; Xie S
    Sci Total Environ; 2014 Feb; 470-471():1184-8. PubMed ID: 24246941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal and fate of endocrine disruptors chemicals under lab-scale postreatment stage. Removal assessment using light, oxygen and microalgae.
    Abargues MR; Ferrer J; Bouzas A; Seco A
    Bioresour Technol; 2013 Dec; 149():142-8. PubMed ID: 24096281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal distribution, source investigation and vertical profile of phenolic endocrine disrupting compounds in Dianchi Lake, China.
    Wang B; Huang B; Jin W; Wang Y; Zhao S; Li F; Hu P; Pan X
    J Environ Monit; 2012 Apr; 14(4):1275-82. PubMed ID: 22421980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of bisphenol A by a nanofiltration membrane in view of drinking water production.
    Zhang Y; Causserand C; Aimar P; Cravedi JP
    Water Res; 2006 Dec; 40(20):3793-9. PubMed ID: 17074381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of bisphenol A with diverse microorganisms from river sediment.
    Peng YH; Chen YJ; Chang YJ; Shih YH
    J Hazard Mater; 2015 Apr; 286():285-90. PubMed ID: 25590822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory degradation studies of four endocrine disruptors in two environmental media.
    Sarmah AK; Northcott GL
    Environ Toxicol Chem; 2008 Apr; 27(4):819-27. PubMed ID: 18333676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.