These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24191666)

  • 1. Mapping the kinetic and thermodynamic landscape of formaldehyde oligomerization under neutral conditions.
    Kua J; Avila JE; Lee CG; Smith WD
    J Phys Chem A; 2013 Nov; 117(47):12658-67. PubMed ID: 24191666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics and kinetics of methylglyoxal dimer formation: a computational study.
    Krizner HE; De Haan DO; Kua J
    J Phys Chem A; 2009 Jun; 113(25):6994-7001. PubMed ID: 19480424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free energy map for the co-oligomerization of formaldehyde and ammonia.
    Kua J; Rodriguez AA; Marucci LA; Galloway MM; De Haan DO
    J Phys Chem A; 2015 Mar; 119(10):2122-31. PubMed ID: 25686471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics and kinetics of glyoxal dimer formation: a computational study.
    Kua J; Hanley SW; Haan DO
    J Phys Chem A; 2008 Jan; 112(1):66-72. PubMed ID: 18067276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary Oligomerization in a Glycolic Acid-Glycine Mixture: A Free Energy Map.
    Kua J; Sweet LM
    J Phys Chem A; 2016 Sep; 120(38):7577-88. PubMed ID: 27606944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycolaldehyde monomer and oligomer equilibria in aqueous solution: comparing computational chemistry and NMR data.
    Kua J; Galloway MM; Millage KD; Avila JE; De Haan DO
    J Phys Chem A; 2013 Apr; 117(14):2997-3008. PubMed ID: 23477589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HCN, Formamidic Acid, and Formamide in Aqueous Solution: A Free-Energy Map.
    Kua J; Thrush KL
    J Phys Chem B; 2016 Aug; 120(33):8175-85. PubMed ID: 27016454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics and kinetics of methylboroxine.amine adduct formation: a computational study.
    Kua J; Gyselbrecht CR
    J Phys Chem A; 2007 Jun; 111(22):4759-66. PubMed ID: 17503791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porphinogen Formation from the Co-Oligomerization of Formaldehyde and Pyrrole: Free Energy Pathways.
    Kua J; Loli H
    J Phys Chem A; 2017 Oct; 121(42):8154-8165. PubMed ID: 28961397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Acid in the Co-oligomerization of Formaldehyde and Pyrrole.
    Kua J; Miller AS; Wallace CE; Loli H
    ACS Omega; 2019 Dec; 4(26):22251-22259. PubMed ID: 31891109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early Steps of Glycolonitrile Oligomerization: A Free-Energy Map.
    Kua J; Paradela TL
    J Phys Chem A; 2020 Dec; 124(48):10019-10028. PubMed ID: 33205651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics and kinetics of imidazole formation from glyoxal, methylamine, and formaldehyde: a computational study.
    Kua J; Krizner HE; De Haan DO
    J Phys Chem A; 2011 Mar; 115(9):1667-75. PubMed ID: 21322623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oligomerization and autocatalysis of NH2BH2 with ammonia-borane.
    Zimmerman PM; Paul A; Zhang Z; Musgrave CB
    Inorg Chem; 2009 Feb; 48(3):1069-81. PubMed ID: 19125668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical investigations into the nucleation of silica growth in basic solution part I--ab initio studies of the formation of trimers and tetramers.
    McIntosh GJ
    Phys Chem Chem Phys; 2013 Mar; 15(9):3155-72. PubMed ID: 23340713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation reactions of 1- and 2-naphthols: an experimental and theoretical study.
    Sreekanth R; Prasanthkumar KP; Sunil Paul MM; Aravind UK; Aravindakumar CT
    J Phys Chem A; 2013 Nov; 117(44):11261-70. PubMed ID: 24093754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of phosphaethyne dimers: a mechanistic study.
    Höltzl T; Szieberth D; Nguyen MT; Veszprémi T
    Chemistry; 2006 Oct; 12(31):8044-55. PubMed ID: 16871504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Studies on the Oligomerization of Silicate Species in Basic Solution.
    Xia H; Fan X; Zhang J; He H; Guo Q
    J Phys Chem A; 2021 Oct; 125(40):8827-8835. PubMed ID: 34587739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the initial stage of silicate oligomerization.
    Zhang XQ; Trinh TT; van Santen RA; Jansen AP
    J Am Chem Soc; 2011 May; 133(17):6613-25. PubMed ID: 21486018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and theoretical examination of C-CN and C-H bond activations of acetonitrile using zerovalent nickel.
    Ateşin TA; Li T; Lachaize S; Brennessel WW; García JJ; Jones WD
    J Am Chem Soc; 2007 Jun; 129(24):7562-9. PubMed ID: 17521188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.