These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 2419180)
1. Recent advances in high-performance liquid chromatographic analysis of small molecules. Application of high-performance liquid chromatography with electrochemical detection to the study of neurotransmitters in vivo. Routledge C; Marsden CA Biochem Soc Trans; 1985 Dec; 13(6):1058-61. PubMed ID: 2419180 [No Abstract] [Full Text] [Related]
2. Simultaneous determination of serotonin, 5-hydroxindoleacetic acid, 3,4-dihydroxyphenylacetic acid and homovanillic acid by high performance liquid chromatography with electrochemical detection. Sperk G J Neurochem; 1982 Mar; 38(3):840-3. PubMed ID: 6173467 [TBL] [Abstract][Full Text] [Related]
3. Changes in monoamine metabolites measured by simultaneous in vivo differential pulse voltammetry and intracerebral dialysis. Sharp T; Maidment NT; Brazell MP; Zetterström T; Ungerstedt U; Bennett GW; Marsden CA Neuroscience; 1984 Aug; 12(4):1213-21. PubMed ID: 6207457 [TBL] [Abstract][Full Text] [Related]
4. Distribution of norepinephrine, epinephrine, dopamine, serotonin, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindole-3-acetic acid in dog brain. Mefford IN; Foutz A; Noyce N; Jurik SM; Handen C; Dement WC; Barchas JD Brain Res; 1982 Mar; 236(2):339-49. PubMed ID: 6175382 [TBL] [Abstract][Full Text] [Related]
5. Determination of dopamine, homovanillic acid and 3,4-dihydroxyphenylacetic acid in rat brain striatum by high-performance liquid chromatography with electrochemical detection. Saraswat LD; Holdiness MR; Justice JB; Salamone JD; Neill DB J Chromatogr; 1981 Mar; 222(3):353-62. PubMed ID: 7228945 [TBL] [Abstract][Full Text] [Related]
6. Comparative studies of brain 5-hydroxytryptamine and tryptamine. Knott PJ; Marsden CA; Curzon G Adv Biochem Psychopharmacol; 1974; 11(0):109-14. PubMed ID: 4602667 [No Abstract] [Full Text] [Related]
7. Correlation between high-performance liquid chromatography and automated fluorimetric methods for the determination of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindoleacetic acid in nervous tissue and cerebrospinal fluid. Westerink BH J Chromatogr; 1982 Dec; 233():69-77. PubMed ID: 6186680 [TBL] [Abstract][Full Text] [Related]
8. Concentration of 5-hydroxytryptamine and its acid metabolite in ventricle-near regions of the rat brain. Vogt M; Wilson G J Neurochem; 1972 Jun; 19(6):1599-600. PubMed ID: 5035305 [No Abstract] [Full Text] [Related]
9. An improved differential pulse voltammetry technique allows the simultaneous analysis of dopaminergic and serotonergic activities in vivo with a single carbon-fibre electrode. Crespi F; Paret J; Keane PE; Morre M Neurosci Lett; 1984 Nov; 52(1-2):159-64. PubMed ID: 6084835 [TBL] [Abstract][Full Text] [Related]
10. The effects of a single acute dose of dexamethasone on monoamine and metabolite levels in rat brain. Rothschild AJ; Langlais PJ; Schatzberg AF; Miller MM; Saloman MS; Lerbinger JE; Cole JO; Bird ED Life Sci; 1985 Jul; 36(26):2491-501. PubMed ID: 2409422 [TBL] [Abstract][Full Text] [Related]
11. Reverse-phase high-performance liquid chromatographic separation and electrochemical detection of norepinephrine, dopamine, serotonin, and related major metabolites. Kempf E; Mandel P Anal Biochem; 1981 Apr; 112(2):223-31. PubMed ID: 6167177 [No Abstract] [Full Text] [Related]
12. Electrical stimulation of the C1 region of the rostral ventrolateral medulla of the rat increases mean arterial pressure and adrenaline release in the posterior hypothalamus. Routledge C; Marsden CA Neuroscience; 1987 Feb; 20(2):457-66. PubMed ID: 2438591 [TBL] [Abstract][Full Text] [Related]
13. Femtogram detection limits for biogenic amines using microbore HPLC with electrochemical detection. Caliguri EJ; Mefford IN Brain Res; 1984 Mar; 296(1):156-9. PubMed ID: 6201234 [TBL] [Abstract][Full Text] [Related]
14. Neurochemical asymmetries in the albino rat's cortex, striatum, and nucleus accumbens. Rosen GD; Finklestein S; Stoll AL; Yutzey DA; Denenberg VH Life Sci; 1984 Mar; 34(12):1143-8. PubMed ID: 6200745 [TBL] [Abstract][Full Text] [Related]
15. The concurrent estimation of the major monoamine metabolites in human and non-human primate brain by HPLC with fluorescence and electrochemical detection. Cross AJ; Joseph MH Life Sci; 1981 Feb; 28(5):499-505. PubMed ID: 6163062 [No Abstract] [Full Text] [Related]
16. Postmortem and regional changes of serotonin, 5-hydroxyindoleacetic acid, and tryptophan in brain. McIntyre IM; Stanley M J Neurochem; 1984 Jun; 42(6):1588-92. PubMed ID: 6202839 [TBL] [Abstract][Full Text] [Related]
17. Serotonin and 5-hydroxyindoleacetic acid concentrations in individual hypothalamic nuclei and other brain areas of rat. Oomagari K; Uchimura H; Matsumoto T; Yokoo H; Hirano M; Kim JS; Nakahara T Experientia; 1984 Nov; 40(11):1288-90. PubMed ID: 6209163 [TBL] [Abstract][Full Text] [Related]
18. A simple, sensitive method for measuring 3,4-dihydroxyphenylacetic acid and homovanillic acid in rat brain tissue using high-performance liquid chromatography with electrochemical detection. Hefti F Life Sci; 1979 Aug; 25(9):775-81. PubMed ID: 491856 [No Abstract] [Full Text] [Related]
19. Simultaneous determination of 3,4-dihydroxyphenylacetic acid and homovanillic acid in milligram amounts of rat striatal tissue by gas-liquid chromatography. Watson E; Travis B; Wilk S Life Sci; 1974 Dec; 15(12):2167-78. PubMed ID: 4621013 [No Abstract] [Full Text] [Related]
20. Lack of a sustained effect on catecholamines or indoles in mouse brain after long term subcutaneous administration of caffeine and theophylline. Zielke HR; Zielke CL Life Sci; 1986 Aug; 39(6):565-72. PubMed ID: 2426551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]