These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24192131)

  • 41. Electrocyte physiology: 50 years later.
    Markham MR
    J Exp Biol; 2013 Jul; 216(Pt 13):2451-8. PubMed ID: 23761470
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Central nervous system physiology of electroreception, a review.
    Bell CC
    J Physiol (Paris); 1979; 75(4):361-79. PubMed ID: 390119
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural, functional and developmental convergence of the insect mushroom bodies with higher brain centers of vertebrates.
    Farris SM
    Brain Behav Evol; 2008; 72(1):1-15. PubMed ID: 18560208
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolution and hormonal regulation of sex differences in the electrocommunication behavior of ghost knifefishes (Apteronotidae).
    Smith GT
    J Exp Biol; 2013 Jul; 216(Pt 13):2421-33. PubMed ID: 23761467
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Imaging in electrosensory systems.
    Pereira AC; Caputi AA
    Interdiscip Sci; 2010 Dec; 2(4):291-307. PubMed ID: 21153776
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evolutionary change in the brain size of bats.
    Yao L; Brown JP; Stampanoni M; Marone F; Isler K; Martin RD
    Brain Behav Evol; 2012; 80(1):15-25. PubMed ID: 22739064
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neural strategies for optimal processing of sensory signals.
    Maler L
    Prog Brain Res; 2007; 165():135-54. PubMed ID: 17925244
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Brain and sense organ anatomy and histology in hemoglobinless Antarctic icefishes (Perciformes: Notothenioidei: Channichthyidae).
    Eastman JT; Lannoo MJ
    J Morphol; 2004 Apr; 260(1):117-40. PubMed ID: 15052601
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Allometric scaling of the tectofugal pathway in birds.
    Iwaniuk AN; Gutierrez-Ibanez C; Pakan JM; Wylie DR
    Brain Behav Evol; 2010; 75(2):122-37. PubMed ID: 20516660
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phylogenetic relationships of mormyrid electric fishes (Mormyridae; Teleostei) inferred from cytochrome b sequences.
    Lavoué S; Bigorne R; Lecointre G; Agnèse JF
    Mol Phylogenet Evol; 2000 Jan; 14(1):1-10. PubMed ID: 10631038
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Retinal projections in gymnotid fishes.
    Lázár G; Tóth P; Szabo T
    J Hirnforsch; 1987; 28(1):13-26. PubMed ID: 3598174
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Weakly electric fish learn both visual and electrosensory cues in a multisensory object discrimination task.
    Dangelmayer S; Benda J; Grewe J
    J Physiol Paris; 2016 Oct; 110(3 Pt B):182-189. PubMed ID: 27825970
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neuroecology of cartilaginous fishes: the functional implications of brain scaling.
    Yopak KE
    J Fish Biol; 2012 Apr; 80(5):1968-2023. PubMed ID: 22497414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Brain architecture and social complexity in modern and ancient birds.
    Burish MJ; Kueh HY; Wang SS
    Brain Behav Evol; 2004; 63(2):107-24. PubMed ID: 14685004
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Post-hatching brain morphogenesis and cell proliferation in the pulse-type mormyrid Mormyrus rume proboscirostris.
    Radmilovich M; Barreiro I; Iribarne L; Grant K; Kirschbaum F; Castelló ME
    J Physiol Paris; 2016 Oct; 110(3 Pt B):245-258. PubMed ID: 27888101
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contextual effects of small environments on the electric images of objects and their brain evoked responses in weakly electric fish.
    Pereira AC; Centurión V; Caputi AA
    J Exp Biol; 2005 Mar; 208(Pt 5):961-72. PubMed ID: 15755894
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electric imaging through active electrolocation: implication for the analysis of complex scenes.
    Engelmann J; Bacelo J; Metzen M; Pusch R; Bouton B; Migliaro A; Caputi A; Budelli R; Grant K; von der Emde G
    Biol Cybern; 2008 Jun; 98(6):519-39. PubMed ID: 18491164
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Snakes as agents of evolutionary change in primate brains.
    Isbell LA
    J Hum Evol; 2006 Jul; 51(1):1-35. PubMed ID: 16545427
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The independent evolution of the enlargement of the principal sensory nucleus of the trigeminal nerve in three different groups of birds.
    Gutiérrez-Ibáñez C; Iwaniuk AN; Wylie DR
    Brain Behav Evol; 2009; 74(4):280-94. PubMed ID: 20051684
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The costs of a big brain: extreme encephalization results in higher energetic demand and reduced hypoxia tolerance in weakly electric African fishes.
    Sukhum KV; Freiler MK; Wang R; Carlson BA
    Proc Biol Sci; 2016 Dec; 283(1845):. PubMed ID: 28003448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.