These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24192347)

  • 1. Structures of Saccharomyces cerevisiae D-arabinose dehydrogenase Ara1 and its complex with NADPH: implications for cofactor-assisted substrate recognition.
    Hu XQ; Guo PC; Ma JD; Li WF
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Nov; 69(Pt 11):1190-5. PubMed ID: 24192347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha,beta-dicarbonyl reduction by Saccharomyces D-arabinose dehydrogenase.
    van Bergen B; Strasser R; Cyr N; Sheppard JD; Jardim A
    Biochim Biophys Acta; 2006 Nov; 1760(11):1636-45. PubMed ID: 17030441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into the cofactor-assisted substrate recognition of yeast methylglyoxal/isovaleraldehyde reductase Gre2.
    Guo PC; Bao ZZ; Ma XX; Xia Q; Li WF
    Biochim Biophys Acta; 2014 Sep; 1844(9):1486-92. PubMed ID: 24879127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-arabinose dehydrogenase and its gene from Saccharomyces cerevisiae.
    Kim ST; Huh WK; Lee BH; Kang SO
    Biochim Biophys Acta; 1998 Dec; 1429(1):29-39. PubMed ID: 9920381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the cofactor-assisted substrate recognition of yeast quinone oxidoreductase Zta1.
    Guo PC; Ma XX; Bao ZZ; Ma JD; Chen Y; Zhou CZ
    J Struct Biol; 2011 Oct; 176(1):112-8. PubMed ID: 21820057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADP(+)-dependent D-arabinose dehydrogenase shows a limited contribution to erythroascorbic acid biosynthesis and oxidative stress resistance in Saccharomyces cerevisiae.
    Amako K; Fujita K; Iwamoto C; Sengee M; Fuchigami K; Fukumoto J; Ogishi Y; Kishimoto R; Goda K
    Biosci Biotechnol Biochem; 2006 Dec; 70(12):3004-12. PubMed ID: 17151466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional insights into Saccharomyces cerevisiae riboflavin biosynthesis reductase RIB7.
    Lv Z; Sun J; Liu Y
    PLoS One; 2013; 8(4):e61249. PubMed ID: 23620735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and mutational studies on an aldo-keto reductase AKR5C3 from Gluconobacter oxydans.
    Liu X; Wang C; Zhang L; Yao Z; Cui D; Wu L; Lin J; Yuan YR; Wei D
    Protein Sci; 2014 Nov; 23(11):1540-9. PubMed ID: 25131535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of NADP(H)-dependent 1,5-anhydro-D-fructose reductase from Sinorhizobium morelense at 2.2 A resolution: construction of a NADH-accepting mutant and its application in rare sugar synthesis.
    Dambe TR; Kühn AM; Brossette T; Giffhorn F; Scheidig AJ
    Biochemistry; 2006 Aug; 45(33):10030-42. PubMed ID: 16906761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of 2,5-diketo-D-gluconic acid reductase A complexed with NADPH at 2.1-A resolution.
    Khurana S; Powers DB; Anderson S; Blaber M
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):6768-73. PubMed ID: 9618487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NAD+-specific D-arabinose dehydrogenase and its contribution to erythroascorbic acid production in Saccharomyces cerevisiae.
    Amako K; Fujita K; Shimohata TA; Hasegawa E; Kishimoto R; Goda K
    FEBS Lett; 2006 Nov; 580(27):6428-34. PubMed ID: 17097644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example.
    Katzberg M; Skorupa-Parachin N; Gorwa-Grauslund MF; Bertau M
    Int J Mol Sci; 2010 Apr; 11(4):1735-58. PubMed ID: 20480039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of yeast xylose reductase in complex with a novel NADP-DTT adduct provides insights into substrate recognition and catalysis.
    Paidimuddala B; Mohapatra SB; Gummadi SN; Manoj N
    FEBS J; 2018 Dec; 285(23):4445-4464. PubMed ID: 30269423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The three-dimensional structure of AKR11B4, a glycerol dehydrogenase from Gluconobacter oxydans, reveals a tryptophan residue as an accelerator of reaction turnover.
    Richter N; Breicha K; Hummel W; Niefind K
    J Mol Biol; 2010 Dec; 404(3):353-62. PubMed ID: 20887732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determinants of substrate specificity for saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; West AH; Cook PF
    Biochemistry; 2007 Jun; 46(25):7625-36. PubMed ID: 17542618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Ypr1p from Saccharomyces cerevisiae as a 2-methylbutyraldehyde reductase.
    Ford G; Ellis EM
    Yeast; 2002 Sep; 19(12):1087-96. PubMed ID: 12210903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the catalytic mechanism of GDP-4-keto-6-deoxy-d-mannose Epimerase/Reductase by kinetic and crystallographic characterization of site-specific mutants.
    Rosano C; Bisso A; Izzo G; Tonetti M; Sturla L; De Flora A; Bolognesi M
    J Mol Biol; 2000 Oct; 303(1):77-91. PubMed ID: 11021971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of AKR1B16, a novel mouse aldo-keto reductase.
    Giménez-Dejoz J; Weber S; Barski OA; Möller G; Adamski J; Parés X; Porté S; Farrés J
    Chem Biol Interact; 2017 Oct; 276():182-193. PubMed ID: 28322781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of dual substrate specificity revealed by the crystal structure of homoisocitrate dehydrogenase from Thermus thermophilus in complex with homoisocitrate·Mg(2+)·NADH.
    Takahashi K; Tomita T; Kuzuyama T; Nishiyama M
    Biochem Biophys Res Commun; 2016 Sep; 478(4):1688-93. PubMed ID: 27601325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
    Liu ZL; Moon J
    Gene; 2009 Oct; 446(1):1-10. PubMed ID: 19577617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.