BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24192830)

  • 1. Grazing of acidophilic bacteria by a flagellated protozoan.
    McGinness S; Johnson DB
    Microb Ecol; 1992 Jan; 23(1):75-86. PubMed ID: 24192830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of an acidophilic, heterotrophic bacterium capable of oxidizing ferrous iron.
    Johnson DB; Ghauri MA; Said MF
    Appl Environ Microbiol; 1992 May; 58(5):1423-8. PubMed ID: 1622207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbiological and chemical characteristics of an acidic stream draining a disused copper mine.
    Walton KC; Johnson DB
    Environ Pollut; 1992; 76(2):169-75. PubMed ID: 15091999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems.
    Rowe OF; Sánchez-España J; Hallberg KB; Johnson DB
    Environ Microbiol; 2007 Jul; 9(7):1761-71. PubMed ID: 17564609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of microbial "streamer" growths in an acidic, metal-contaminated stream draining an abandoned underground copper mine.
    Kay CM; Rowe OF; Rocchetti L; Coupland K; Hallberg KB; Johnson DB
    Life (Basel); 2013 Feb; 3(1):189-210. PubMed ID: 25371339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine.
    Johnson DB; Rolfe S; Hallberg KB; Iversen E
    Environ Microbiol; 2001 Oct; 3(10):630-7. PubMed ID: 11722543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferric iron reduction by acidophilic heterotrophic bacteria.
    Johnson DB; McGinness S
    Appl Environ Microbiol; 1991 Jan; 57(1):207-11. PubMed ID: 16348395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterotrophic bacteria from cultures of autotrophic Thiobacillus ferrooxidans: relationships as studied by means of deoxyribonucleic acid homology.
    Harrison AP; Jarvis BW; Johnson JL
    J Bacteriol; 1980 Jul; 143(1):448-54. PubMed ID: 7400100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring of bacteria in acid mine environments by reverse sample genome probing.
    Léveillé SA; Leduc LG; Ferroni GD; Telang AJ; Voordouw G
    Can J Microbiol; 2001 May; 47(5):431-42. PubMed ID: 11400734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures.
    Bacelar-Nicolau P; Johnson DB
    Appl Environ Microbiol; 1999 Feb; 65(2):585-90. PubMed ID: 9925586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Culture-dependent hunt and characterization of iron-oxidizing bacteria in Baiyin Copper Mine, China, and their application in metals extraction.
    Sajjad W; Zheng G; Ma X; Rafiq M; Irfan M; Xu W; Ali B
    J Basic Microbiol; 2019 Mar; 59(3):323-336. PubMed ID: 30592309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of an Iron-Reducing, Moderately Acidophilic Actinobacterium Isolated from Pyritic Mine Waste, and Its Potential Role in Mitigating Mineral Dissolution in Mineral Tailings Deposits.
    Nancucheo I; Johnson DB
    Microorganisms; 2020 Jul; 8(7):. PubMed ID: 32630740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Leptospirillum ferrooxidans for Leaching.
    Sand W; Rohde K; Sobotke B; Zenneck C
    Appl Environ Microbiol; 1992 Jan; 58(1):85-92. PubMed ID: 16348642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indirect Redox Transformations of Iron, Copper, and Chromium Catalyzed by Extremely Acidophilic Bacteria.
    Johnson DB; Hedrich S; Pakostova E
    Front Microbiol; 2017; 8():211. PubMed ID: 28239375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiobacillus ferrooxidans detection using immunoelectron microscopy.
    Coto O; Fernández AI; León T; Rodríguez D
    Microbiologia; 1992 Nov; 8(2):76-81. PubMed ID: 1492954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron Kinetics and Evolution of Microbial Populations in Low-pH, Ferrous Iron-Oxidizing Bioreactors.
    Jones RM; Johnson DB
    Environ Sci Technol; 2016 Aug; 50(15):8239-45. PubMed ID: 27377871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of acid mine drainage around the Karaerik copper mine (Espiye, Giresun, NE Turkey): implications from the bacterial population in the Acısu effluent.
    Sağlam ES; Akçay M; Çolak DN; İnan Bektaş K; Beldüz AO
    Extremophiles; 2016 Sep; 20(5):673-85. PubMed ID: 27338270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors.
    Rowe OF; Johnson DB
    Syst Appl Microbiol; 2008 Mar; 31(1):68-77. PubMed ID: 17983721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Goethite dissolution by acidophilic bacteria.
    Stanković S; Schippers A
    Front Microbiol; 2024; 15():1360018. PubMed ID: 38846564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of thiobacillus ferrooxidans and leptospirillum ferrooxidans: implications for generation of acid mine drainage.
    Schrenk MO; Edwards KJ; Goodman RM; Hamers RJ; Banfield JF
    Science; 1998 Mar; 279(5356):1519-22. PubMed ID: 9488647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.