These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 24192898)

  • 1. Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering.
    Wen X; Li G; Zhang J; Zhang Q; Peng B; Wong LM; Wang S; Xiong Q
    Nanoscale; 2014 Jan; 6(1):132-9. PubMed ID: 24192898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Fabrication of a Flexible and Transparent Ag Nanocubes@PDMS Film as a SERS Substrate with High Performance.
    Li L; Chin WS
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37538-37548. PubMed ID: 32701289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly flexible near-infrared metamaterials.
    Li GX; Chen SM; Wong WH; Pun EY; Cheah KW
    Opt Express; 2012 Jan; 20(1):397-402. PubMed ID: 22274363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing.
    Shiohara A; Langer J; Polavarapu L; Liz-Marzán LM
    Nanoscale; 2014 Aug; 6(16):9817-23. PubMed ID: 25027634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film.
    Park S; Lee J; Ko H
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):44088-44095. PubMed ID: 29172436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemically Engineered Au-Ag Plasmonic Nanostructures to Realize Large Area and Flexible Metamaterials.
    Kim SJ; Seong M; Yun HW; Ahn J; Lee H; Oh SJ; Hong SH
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25652-25659. PubMed ID: 29979023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering.
    Hu Z; Liu Z; Li L; Quan B; Li Y; Li J; Gu C
    Small; 2014 Oct; 10(19):3933-42. PubMed ID: 24995658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile flexible SERS substrate for in situ detection of contaminants in water and fruits based on Ag NPs decorated wrinkled PDMS film.
    Zhang H; Zhang Z; Wang H; Huang L; Yang Z; Wang Y; Li H
    Opt Express; 2023 Jun; 31(13):21025-21037. PubMed ID: 37381212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wafer-scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns.
    Du K; Wathuthanthri I; Liu Y; Xu W; Choi CH
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5505-14. PubMed ID: 23020206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects.
    Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T
    Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The Study of PDMS Grating Structure Gradient Preparation Techniques].
    Wang CG; Yang JT; Kang N; Guo H; Tang J; Liu J; Xue CY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3529-33. PubMed ID: 26964244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive Surface-Enhanced Raman Scattering Detection Using On-Demand Postassembled Particle-on-Film Structure.
    Wang X; Zhu X; Chen Y; Zheng M; Xiang Q; Tang Z; Zhang G; Duan H
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):31102-31110. PubMed ID: 28832109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps.
    Zhu Z; Bai B; Duan H; Zhang H; Zhang M; You O; Li Q; Tan Q; Wang J; Fan S; Jin G
    Small; 2014 Apr; 10(8):1603-11. PubMed ID: 24665074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ag microlabyrinth/nanoparticles coated large-area thin PDMS films as flexible and transparent SERS substrates for in situ detection.
    Sun M; Zhang H; Li H; Hao X; Wang C; Li L; Yang Z; Tian C
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123153. PubMed ID: 37473663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring alphabetical metamaterials in optical frequency: plasmonic coupling, dispersion, and sensing.
    Zhang J; Cao C; Xu X; Liow C; Li S; Tan P; Xiong Q
    ACS Nano; 2014 Apr; 8(4):3796-806. PubMed ID: 24670107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of gold-coated PDMS surfaces with arrayed triangular micro/nanopyramids for use as SERS substrates.
    Zhang J; Yan Y; Miao P; Cai J
    Beilstein J Nanotechnol; 2017; 8():2271-2282. PubMed ID: 29181284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembly of Strain-Adaptable Surface-Enhanced Raman Scattering Substrate on Polydimethylsiloxane Nanowrinkles.
    Peng R; Zhang T; Wang S; Liu Z; Pan P; Xu X; Song Y; Liu X; Yan S; Wang J
    Anal Chem; 2024 Jul; 96(26):10620-10629. PubMed ID: 38888085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible, Transparent, and Free-Standing Silicon Nanowire SERS Platform for in Situ Food Inspection.
    Cui H; Li S; Deng S; Chen H; Wang C
    ACS Sens; 2017 Mar; 2(3):386-393. PubMed ID: 28723200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid fabrication of flexible and transparent gold nanorods/poly (methyl methacrylate) membrane substrate for SERS nanosensor application.
    Yang N; You TT; Gao YK; Zhang CM; Yin PG
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Sep; 202():376-381. PubMed ID: 29803976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging.
    Li M; Lu J; Qi J; Zhao F; Zeng J; Yu JC; Shih WC
    J Biomed Opt; 2014 May; 19(5):050501. PubMed ID: 24805805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.