These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 241929)
1. Glycolytic metabolism in cultured cells of the nervous system. I. Glucose transport and metabolism in the C-6 glioma cell line. Lust WD; Schwartz JP; Passonneau JV Mol Cell Biochem; 1975 Sep; 8(3):169-76. PubMed ID: 241929 [TBL] [Abstract][Full Text] [Related]
2. Glycolytic metabolism in cultured cells of the nervous system. II. Regulation of pyruvate and lactate metabolism in the C-6 glioma cell line. Schwartz JP; Lust WD; Lauderdale VR; Passonneau JV Mol Cell Biochem; 1975 Nov; 9(2):67-72. PubMed ID: 1196301 [TBL] [Abstract][Full Text] [Related]
3. Lactate transport and glycolytic activity in the freshly isolated rabbit cornea. Chen CH; Chen SC Arch Biochem Biophys; 1990 Jan; 276(1):70-6. PubMed ID: 1688697 [TBL] [Abstract][Full Text] [Related]
4. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Halestrap AP Biochem J; 1976 May; 156(2):193-207. PubMed ID: 942406 [TBL] [Abstract][Full Text] [Related]
5. Phosphorylation of pyruvate kinase and glycolytic metabolism in three human glioma cell lines. Oude Weernink PA; Rijksen G; Staal GE Tumour Biol; 1991; 12(6):339-52. PubMed ID: 1798909 [TBL] [Abstract][Full Text] [Related]
6. Glycolytic metabolism in cultured cells of the nervous system. III. The effects of thiamine deficiency and pyrithiamine on the C-6 glioma and C-1300 neuroblastoma cell lines. Schwartz JP; Lust WD; Shirazawa R; Passonneau JV Mol Cell Biochem; 1975 Nov; 9(2):73-8. PubMed ID: 1196302 [TBL] [Abstract][Full Text] [Related]
7. Effects of physiologic concentrations of lactate, pyruvate and ascorbate on glucose metabolism in unstressed and oxidatively stressed human red blood cells. Sullivan SG; Stern A Biochem Pharmacol; 1983 Oct; 32(19):2891-902. PubMed ID: 6626261 [TBL] [Abstract][Full Text] [Related]
8. Reversible independent alterations in glucose transport and metabolism in cultured human cells deprived of glucose. Salter DW; Cook JS J Cell Physiol; 1976 Sep; 89(1):143-55. PubMed ID: 956278 [TBL] [Abstract][Full Text] [Related]
9. Lactate balance in perfused rat liver: effects of glucose concentration, flow and low pH on glucose to lactate flux. Sestoft L; Marshall MO Scand J Clin Lab Invest; 1990 Nov; 50(7):781-5. PubMed ID: 2293340 [TBL] [Abstract][Full Text] [Related]
10. Lactate and regulation of lung glycolytic rate. Fisher AB; Dodia C Am J Physiol; 1984 May; 246(5 Pt 1):E426-9. PubMed ID: 6720945 [TBL] [Abstract][Full Text] [Related]
11. Functional characteristics of pyruvate transport in Phycomyces blakesleeanus. Marcos JA; de Arriaga D; Busto F; Soler J Fungal Genet Biol; 1998 Dec; 25(3):204-15. PubMed ID: 9917374 [TBL] [Abstract][Full Text] [Related]
12. Metabolism of round spermatids: evidence that lactate is preferred substrate. Nakamura M; Okinaga S; Arai K Am J Physiol; 1984 Aug; 247(2 Pt 1):E234-42. PubMed ID: 6431825 [TBL] [Abstract][Full Text] [Related]
13. Glucose requirement for postischemic recovery of perfused working heart. Mallet RT; Hartman DA; Bünger R Eur J Biochem; 1990 Mar; 188(2):481-93. PubMed ID: 2318214 [TBL] [Abstract][Full Text] [Related]
14. Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles. Roth DA; Brooks GA Arch Biochem Biophys; 1990 Jun; 279(2):386-94. PubMed ID: 2350185 [TBL] [Abstract][Full Text] [Related]
15. The participation of energy substrates in the control of meiotic maturation in murine oocytes. Downs SM; Mastropolo AM Dev Biol; 1994 Mar; 162(1):154-68. PubMed ID: 8125183 [TBL] [Abstract][Full Text] [Related]
16. Actions of glucagon on flux rates in perfused rat liver. 1. Kinetics of the inhibitory effect on glycolysis and the stimulatory effect on glycogenolysis. Kimmig R; Mauch TJ; Kerzl W; Schwabe U; Scholz R Eur J Biochem; 1983 Nov; 136(3):609-16. PubMed ID: 6641732 [TBL] [Abstract][Full Text] [Related]
17. The role of the cytoplasmic redox potential in the control of fatty acid synthesis from glucose, pyruvate and lactate in white adipose tissue. Halperin ML; Robinson BH Biochem J; 1970 Jan; 116(2):235-40. PubMed ID: 4313115 [TBL] [Abstract][Full Text] [Related]
18. Metabolic flux determination in C6 glioma cells using carbon-13 distribution upon [1-13C]glucose incubation. Portais JC; Schuster R; Merle M; Canioni P Eur J Biochem; 1993 Oct; 217(1):457-68. PubMed ID: 7901007 [TBL] [Abstract][Full Text] [Related]
19. Studies of metabolism of round spermatids: glucose as unfavorable substrate. Nakamura M; Okinaga S; Arai K Biol Reprod; 1986 Nov; 35(4):927-35. PubMed ID: 2949782 [TBL] [Abstract][Full Text] [Related]
20. Isotopic evaluation of the metabolism of pyruvate and related substrates in normal adult volunteers and severely burned children: effect of dichloroacetate and glucose infusion. Wolfe RR; Jahoor F; Herndon DN; Miyoshi H Surgery; 1991 Jul; 110(1):54-67. PubMed ID: 1866694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]