These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24193037)

  • 1. Cell density and non-equilibrium sorption effects on bacterial dispersal in groundwater microcosms.
    Lindgvist R; Enfield CG
    Microb Ecol; 1992 Jul; 24(1):25-41. PubMed ID: 24193037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersal dynamics of groundwater bacteria.
    Lindqvist R; Bengtsson G
    Microb Ecol; 1991 Dec; 21(1):49-72. PubMed ID: 24194201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation and sorption of atrazine, hexazinone and procymidone in coastal sand aquifer media.
    Pang L; Close M; Flintoft M
    Pest Manag Sci; 2005 Feb; 61(2):133-43. PubMed ID: 15619714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.
    Flury M; Czigány S; Chen G; Harsh JB
    J Contam Hydrol; 2004 Jul; 71(1-4):111-26. PubMed ID: 15145564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imidacloprid transport and sorption nonequilibrium in single and multilayered columns of Immokalee fine sand.
    Leiva JA; Nkedi-Kizza P; Morgan KT; Kadyampakeni DM
    PLoS One; 2017; 12(8):e0183767. PubMed ID: 28837702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and bacterial interactions of three bacterial strains in saturated column experiments.
    Stumpp C; Lawrence JR; Hendry MJ; Maloszewski P
    Environ Sci Technol; 2011 Mar; 45(6):2116-23. PubMed ID: 21319738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand.
    Mills AL; Herman JS; Hornberger GM; Dejesús TH
    Appl Environ Microbiol; 1994 Sep; 60(9):3300-6. PubMed ID: 16349383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facilitated transport of cadmium with montmorillonite KSF colloids under different pH conditions in water-saturated sand columns: Experiment and transport modeling.
    Chotpantarat S; Kiatvarangkul N
    Water Res; 2018 Dec; 146():216-231. PubMed ID: 30268883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental determination of nonequilibrium transport parameters reflecting the competitive sorption between Cu and Pb in slag-sand column.
    Chung J; Kim YJ; Lee G; Nam K
    Chemosphere; 2016 Jul; 154():335-342. PubMed ID: 27060642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity.
    Compère F; Porel G; Delay F
    J Contam Hydrol; 2001 May; 49(1-2):1-21. PubMed ID: 11351511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Straining, attachment, and detachment of cryptosporidium oocysts in saturated porous media.
    Bradford SA; Bettahar M
    J Environ Qual; 2005; 34(2):469-78. PubMed ID: 15758099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of water content on reactive transport of 85Sr in Chernobyl sand columns.
    Szenknect S; Ardois C; Dewière L; Gaudet JP
    J Contam Hydrol; 2008 Aug; 100(1-2):47-57. PubMed ID: 18586351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered transport of lindane caused by the retention of natural particles in saturated porous media.
    Ngueleu SK; Grathwohl P; Cirpka OA
    J Contam Hydrol; 2014 Jul; 162-163():47-63. PubMed ID: 24859485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption of dichlorodiphenyltrichloroethane and hexachlorobenzene in groundwater and its implications for facilitated transport.
    Lindqvist R; Enfield CG
    Appl Environ Microbiol; 1992 Jul; 58(7):2211-8. PubMed ID: 1637158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of nonideal sorption formulations in modeling the transport of phthalate esters through packed soil columns.
    Maraqa MA; Zhao X; Lee JU; Allan F; Voice TC
    J Contam Hydrol; 2011 Jul; 125(1-4):57-69. PubMed ID: 21621291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of Escherichia coli through variably saturated sand columns and modeling approaches.
    Jiang G; Noonan MJ; Buchan GD; Smith N
    J Contam Hydrol; 2007 Aug; 93(1-4):2-20. PubMed ID: 17336421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic modeling of pH-dependent antimony (V) sorption and transport in iron oxide-coated sand.
    Cai Y; Li L; Zhang H
    Chemosphere; 2015 Nov; 138():758-64. PubMed ID: 26291756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salinity and soluble organic matter on virus sorption in sand and soil columns.
    Cao H; Tsai FT; Rusch KA
    Ground Water; 2010; 48(1):42-52. PubMed ID: 19878328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of dissolved organic carbon by aquifer material: Correlations between column parameters, sorption isotherms and octanol-water partition coefficient.
    Pradhan S; Boernick H; Kumar P; Mehrotra I
    J Environ Manage; 2016 Jul; 177():36-44. PubMed ID: 27082255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the method of temporal moments to interpret solute transport with sorption and degradation.
    Pang L; Goltz M; Close M
    J Contam Hydrol; 2003 Jan; 60(1-2):123-34. PubMed ID: 12498577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.