BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24193203)

  • 1. Correlating elastic properties and molecular organization of an ionic organic nanostructure.
    Eskelsen JR; Qi Y; Schneider-Pollack S; Schmitt S; Hipps KW; Mazur U
    Nanoscale; 2014 Jan; 6(1):316-27. PubMed ID: 24193203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoresponsive Porphyrin Nanotubes of
    Koposova EA; Offenhäusser A; Ermolenko YE; Mourzina YG
    Front Chem; 2019; 7():351. PubMed ID: 31157213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of single-crystal tetra(4-pyridyl)porphyrin rectangular nanotubes in the vapor phase.
    Yoon SM; Hwang IC; Kim KS; Choi HC
    Angew Chem Int Ed Engl; 2009; 48(14):2506-9. PubMed ID: 19235192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilayer nanostructured porphyrin arrays constructed by layer-by-layer self-assembly.
    Smith AR; Ruggles JL; Yu A; Gentle IR
    Langmuir; 2009 Sep; 25(17):9873-8. PubMed ID: 19572527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular organization in self-assembled binary porphyrin nanotubes revealed by resonance Raman spectroscopy.
    Franco R; Jacobsen JL; Wang H; Wang Z; István K; Schore NE; Song Y; Medforth CJ; Shelnutt JA
    Phys Chem Chem Phys; 2010 Apr; 12(16):4072-7. PubMed ID: 20379498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New porphyrins bearing pyridyl peripheral groups linked by secondary or tertiary sulfonamide groups: synthesis and structural characterization.
    Manono J; Marzilli PA; Fronczek FR; Marzilli LG
    Inorg Chem; 2009 Jul; 48(13):5626-35. PubMed ID: 19518078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant assisted self-assembly of zinc 5,10-bis (4-pyridyl)-15,20-bis (4-octadecyloxyphenyl) porphyrin into supramolecular nanoarchitectures.
    Gautam R; Chauhan SM
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():447-57. PubMed ID: 25175235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ observation of size-scale effects on the mechanical properties of ZnO nanowires.
    Asthana A; Momeni K; Prasad A; Yap YK; Yassar RS
    Nanotechnology; 2011 Jul; 22(26):265712. PubMed ID: 21586815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology-controlled self-assembled nanostructures of 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin derivatives. Effect of metal-ligand coordination bonding on tuning the intermolecular interaction.
    Gao Y; Zhang X; Ma C; Li X; Jiang J
    J Am Chem Soc; 2008 Dec; 130(50):17044-52. PubMed ID: 19007122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protic solvent effects on the photophysical properties of O=Ti(IV)TSPP: photoinduced electron transfer.
    Ryu SY; Yoon M; Jeoung SC; Song N
    Photochem Photobiol Sci; 2005 Jan; 4(1):54-60. PubMed ID: 15616692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unusual photoinduced electron transfer from a zinc porphyrin to a tetrapyridyl free-base porphyrin in a noncovalent multiporphyrin array.
    Ventura B; Flamigni L; Beyler M; Heitz V; Sauvage JP
    Chemistry; 2010 Aug; 16(29):8748-56. PubMed ID: 20589848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyelectrolyte-assisted noncovalent functionalization of carbon nanotubes with ordered self-assemblies of a water-soluble porphyrin.
    Andrade SM; Raja P; Saini VK; Viana AS; Serp P; Costa SM
    Chemphyschem; 2012 Nov; 13(16):3622-31. PubMed ID: 22887177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular basis of self-assembly of dendron-rod-coils into one-dimensional nanostructures.
    Zubarev ER; Sone ED; Stupp SI
    Chemistry; 2006 Sep; 12(28):7313-27. PubMed ID: 16892475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binary ionic porphyrin nanosheets: electronic and light-harvesting properties regulated by crystal structure.
    Tian Y; Beavers CM; Busani T; Martin KE; Jacobsen JL; Mercado BQ; Swartzentruber BS; van Swol F; Medforth CJ; Shelnutt JA
    Nanoscale; 2012 Mar; 4(5):1695-700. PubMed ID: 22310932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microgel-silica hybrid particles: strategies for tunable nanostructure, composition, surface property and porphyrin functionalization.
    Li X; Yuan J; Liu H; Jiang L; Sun S; Cheng S
    J Colloid Interface Sci; 2010 Aug; 348(2):408-15. PubMed ID: 20483426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From layered double hydroxide to spinel nanostructures: facile synthesis and characterization of nanoplatelets and nanorods.
    Sun G; Sun L; Wen H; Jia Z; Huang K; Hu C
    J Phys Chem B; 2006 Jul; 110(27):13375-80. PubMed ID: 16821857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of various porphyrin nanostructures via an oil/aqueous medium: controlled self-assembly, further organization, and supramolecular chirality.
    Qiu Y; Chen P; Liu M
    J Am Chem Soc; 2010 Jul; 132(28):9644-52. PubMed ID: 20578772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of hydrogen bonding in the photophysical properties of isomeric tetrapyridylporphyrins in aprotic solvent.
    Kumar PH; Prashanthi S; Bangal PR
    J Phys Chem A; 2011 Feb; 115(5):631-42. PubMed ID: 21210681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. π-Conjugated cyanostilbene derivatives: a unique self-assembly motif for molecular nanostructures with enhanced emission and transport.
    An BK; Gierschner J; Park SY
    Acc Chem Res; 2012 Apr; 45(4):544-54. PubMed ID: 22085759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraction and metalation of porphyrins in fluorous liquids with carboxylic acids and metal salts.
    O'Neal KL; Weber SG
    J Phys Chem B; 2009 May; 113(21):7449-56. PubMed ID: 19413352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.