These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24193535)

  • 1. Symplastic isolation of the sieve element-companion cell complex in the phloem of Ricinus communis and Salix alba stems.
    van Bel AJ; Kempers R
    Planta; 1991 Dec; 183(1):69-76. PubMed ID: 24193535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural indications for coexistence of symplastic and apoplastic phloem loading in Commelina benghalensis leaves : Differences in ontogenic development, spatial arrangement and symplastic connections of the two sieve tubes in the minor vein.
    van Bel AJ; van Kesteren WJ; Papenhuijzen C
    Planta; 1988 Nov; 176(2):159-72. PubMed ID: 24220769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunolocalization of plasma-membrane H+-ATPase and tonoplast-type pyrophosphatase in the plasma membrane of the sieve element-companion cell complex in the stem of Ricinus communis L.
    Langhans M; Ratajczak R; Lützelschwab M; Michalke W; Wächter R; Fischer-Schliebs E; Ullrich CI
    Planta; 2001 May; 213(1):11-9. PubMed ID: 11523647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A morphometric analysis of the phloem-unloading pathway in developing tobacco leaves.
    Ding B; Parthasarathy MV; Niklas K; Turgeon R
    Planta; 1988 Dec; 176(3):307-18. PubMed ID: 24220859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and frequency of plasmodesmata in relation to photoassimilate pathways and phloem loading in the barley leaf.
    Evert RF; Russin WA; Botha CE
    Planta; 1996 Apr; 198(4):572-579. PubMed ID: 28321668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic battle for photosynthate acquisition between sieve tubes and adjoining parenchyma in transport phloem.
    Hafke JB; van Amerongen JK; Kelling F; Furch AC; Gaupels F; van Bel AJ
    Plant Physiol; 2005 Jul; 138(3):1527-37. PubMed ID: 15980202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minor vein structure and sugar transport in Arabidopsis thaliana.
    Haritatos E; Medville R; Turgeon R
    Planta; 2000 Jun; 211(1):105-11. PubMed ID: 10923710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure, plasmodesmatal frequency, and solute concentration in green areas of variegated Coleus blumei Benth. leaves.
    Fisher DG
    Planta; 1986 Oct; 169(2):141-52. PubMed ID: 24232544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-sieve element transport of photoassimilates in sink regions.
    Patrick JW; Offler CE
    J Exp Bot; 1996 Aug; 47 Spec No():1165-77. PubMed ID: 21245245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological approach to determine kinetic parameters of sucrose uptake by single sieve elements or phloem parenchyma cells in intact Vicia faba plants.
    Hafke JB; Höll SR; Kühn C; van Bel AJ
    Front Plant Sci; 2013; 4():274. PubMed ID: 23914194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for functional heterogeneity of sieve element-companion cell complexes in minor vein phloem of Alonsoa meridionalis.
    Voitsekhovskaja OV; Rudashevskaya EL; Demchenko KN; Pakhomova MV; Batashev DR; Gamalei YV; Lohaus G; Pawlowski K
    J Exp Bot; 2009; 60(6):1873-83. PubMed ID: 19321649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of plasmodesmatal endoplasmic reticulum coupling between sieve elements and companion cells using fluorescence redistribution after photobleaching.
    Martens HJ; Roberts AG; Oparka KJ; Schulz A
    Plant Physiol; 2006 Oct; 142(2):471-80. PubMed ID: 16905664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STRUCTURAL ASPECTS OF THE PRIMARY TISSUES OF THE CUCURBITA PEPO L. ROOT WITH SPECIAL REFERENCE TO THE PHLOEM.
    Warmbrodt RD
    New Phytol; 1986 Jan; 102(1):175-192. PubMed ID: 33873876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary phloem diversity and evolution in Bignonieae (Bignoniaceae).
    Pace MR; Alcantara S; Lohmann LG; Angyalossy V
    Ann Bot; 2015 Sep; 116(3):333-58. PubMed ID: 26311709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phloem loading--not metaphysical, only complex: towards a unified model of phloem loading.
    Komor E; Orlich G; Weig A; Köckenberger W
    J Exp Bot; 1996 Aug; 47 Spec No():1155-64. PubMed ID: 21245244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructure of and plasmodesmatal frequency in mature leaves of sugarcane.
    Robinson-Beers K; Evert RF
    Planta; 1991 Jun; 184(3):291-306. PubMed ID: 24194146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata.
    Balachandran S; Xiang Y; Schobert C; Thompson GA; Lucas WJ
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):14150-5. PubMed ID: 9391168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What is Phloem unloading?
    Oparka KJ
    Plant Physiol; 1990 Oct; 94(2):393-6. PubMed ID: 16667726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sieve tube unloading and post-phloem transport of fluorescent tracers and proteins injected into sieve tubes via severed aphid stylets.
    Fisher DB; Cash-Clark CE
    Plant Physiol; 2000 May; 123(1):125-38. PubMed ID: 10806231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Use of Fluorescent Tracers to Characterize the Post-Phloem Transport Pathway in Maternal Tissues of Developing Wheat Grains.
    Wang N; Fisher DB
    Plant Physiol; 1994 Jan; 104(1):17-27. PubMed ID: 12232057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.