These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 24193575)
1. Sublethal effects of cadmium on arm regeneration in the burrowing brittlestar, Microphiopholis gracillima. D'Andrea AF; Stancyk SE; Chandler GT Ecotoxicology; 1996 Apr; 5(2):115-33. PubMed ID: 24193575 [TBL] [Abstract][Full Text] [Related]
2. Nutrient Translocation during Early Disc Regeneration in the Brittlestar Microphiopholis gracillima (Stimpson) (Echinodermata: Ophiuroidea). Dobson WE; Stancyk SE; Clements LA; Showman RM Biol Bull; 1991 Feb; 180(1):167-184. PubMed ID: 29303627 [TBL] [Abstract][Full Text] [Related]
3. Burrowing responses of the short-neck clam Ruditapes philippinarum to sediment contaminants. Shin PK; Ng AW; Cheung RY Mar Pollut Bull; 2002; 45(1-12):133-9. PubMed ID: 12398377 [TBL] [Abstract][Full Text] [Related]
4. Assessment of sediment/water contamination by in vivo transplantation of the cockles Cerastoderma glaucum from a non contaminated to a contaminated area by cadmium. Machreki-Ajmi M; Hamza-Chaffai A Ecotoxicology; 2008 Nov; 17(8):802-10. PubMed ID: 18574691 [TBL] [Abstract][Full Text] [Related]
5. Exposure-dose-response relationships of the freshwater bivalve Hyridella australis to cadmium spiked sediments. Marasinghe Wadige CP; Maher WA; Taylor AM; Krikowa F Aquat Toxicol; 2014 Jul; 152():361-71. PubMed ID: 24834859 [TBL] [Abstract][Full Text] [Related]
6. Growth or differentiation? Adaptive regeneration in the brittlestar Amphiura filiformis. Dupont S; Thorndyke MC J Exp Biol; 2006 Oct; 209(Pt 19):3873-81. PubMed ID: 16985203 [TBL] [Abstract][Full Text] [Related]
7. Effects of cadmium accumulation from suspended sediments and phytoplankton on the Oyster Saccostrea glomerata. Schmitz HA; Maher WA; Taylor AM; Krikowa F Aquat Toxicol; 2015 Mar; 160():22-30. PubMed ID: 25577692 [TBL] [Abstract][Full Text] [Related]
8. Effects of cadmium-enriched sediment on fish and amphibian embryo-larval stages. Francis PC; Birge WJ; Black JA Ecotoxicol Environ Saf; 1984 Aug; 8(4):378-87. PubMed ID: 6332728 [TBL] [Abstract][Full Text] [Related]
9. Effects of organic amendments on the toxicity and bioavailability of cadmium and copper in spiked formulated sediments. Besser JM; Brumbaugh WG; May TW; Ingersoll CG Environ Toxicol Chem; 2003 Apr; 22(4):805-15. PubMed ID: 12685716 [TBL] [Abstract][Full Text] [Related]
10. Coupling geochemical and biological approaches to assess the availability of cadmium in freshwater sediment. Dabrin A; Durand CL; Garric J; Geffard O; Ferrari BJ; Coquery M Sci Total Environ; 2012 May; 424():308-15. PubMed ID: 22446110 [TBL] [Abstract][Full Text] [Related]
11. Bioaccumulation and molecular effects of sediment-bound metals in zebrafish embryos. Redelstein R; Zielke H; Spira D; Feiler U; Erdinger L; Zimmer H; Wiseman S; Hecker M; Giesy JP; Seiler TB; Hollert H Environ Sci Pollut Res Int; 2015 Nov; 22(21):16290-304. PubMed ID: 26354112 [TBL] [Abstract][Full Text] [Related]
12. Chronic sublethal sediment toxicity testing using the estuarine amphipod, Melita plumulosa (Zeidler): evaluation using metal-spiked and field-contaminated sediments. Gale SA; King CK; Hyne RV Environ Toxicol Chem; 2006 Jul; 25(7):1887-98. PubMed ID: 16833152 [TBL] [Abstract][Full Text] [Related]
13. Isolation and screening of brittlestar-associated bacteria for antibacterial activity. Strahl ED; Dobson WE; Lundie LL Curr Microbiol; 2002 Jun; 44(6):450-9. PubMed ID: 12000997 [TBL] [Abstract][Full Text] [Related]
14. Effects of Temperature and Exposure Duration on Transfer of Cadmium Between Naturally Contaminated Sediments and Burrowing Mayfly Nymphs (Hexagenia rigida). Andres S; Ribeyre F; Boudou A Arch Environ Contam Toxicol; 1998 Aug; 35(2):295-301. PubMed ID: 9680521 [TBL] [Abstract][Full Text] [Related]
15. Determining cadmium bioavailability in sediment profiles using diffusive gradients in thin films. Song Z; Song G; Tang W; Yan D; Han M; Shan B J Environ Sci (China); 2020 May; 91():160-167. PubMed ID: 32172964 [TBL] [Abstract][Full Text] [Related]
16. Cadmium accumulation in the freshwater isopod Asellus racovitzai: the relative importance of solute and particulate sources at trace concentrations. Eimers MC; Evans RD; Welbourn PM Environ Pollut; 2001; 111(2):247-53. PubMed ID: 11202728 [TBL] [Abstract][Full Text] [Related]
17. Effects of long term sublethal Cd exposure in rainbow trout during soft water exposure: implications for biotic ligand modelling. Hollis L; McGeer JC; McDonald DG; Wood CM Aquat Toxicol; 2000 Nov; 51(1):93-105. PubMed ID: 10998502 [TBL] [Abstract][Full Text] [Related]
18. Toxicity of cadmium to Caenorhabditis elegans (Nematoda) in whole sediment and pore water--the ambiguous role of organic matter. Höss S; Henschel T; Haitzer M; Traunspurger W; Steinberg CE Environ Toxicol Chem; 2001 Dec; 20(12):2794-801. PubMed ID: 11764163 [TBL] [Abstract][Full Text] [Related]
19. Cadmium and methylmercury bioaccumulation by nymphs of the burrowing mayflyHexagenia rigida from the water column and sediment. Odin M; Ribeyre F; Boudou A Environ Sci Pollut Res Int; 1995 Nov; 2(3):145-52. PubMed ID: 24234609 [TBL] [Abstract][Full Text] [Related]
20. Uptake of dissolved Ag, Cd, and Co by the clam, Macoma balthica: relative importance of overlying water, oxic pore water, and burrow water. Griscom SB; Fisher NS Environ Sci Technol; 2002 Jun; 36(11):2471-8. PubMed ID: 12075807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]