These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24193745)

  • 1. The action of phosphatidate phosphatase on the fatty-acid composition of safflower triacylglycerol and spinach glycerolipids.
    Ichihara K
    Planta; 1991 Feb; 183(3):353-8. PubMed ID: 24193745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1-Acyl-sn-glycerol-3-phosphate acyltransferase in maturing safflower seeds and its contribution to the non-random fatty acid distribution of triacylglycerol.
    Ichihara K; Asahi T; Fujii S
    Eur J Biochem; 1987 Sep; 167(2):339-47. PubMed ID: 3622518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The acylation of sn-glycerol 3-phosphate and the metabolism of phosphatidate in microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius L.) seed.
    Griffiths G; Stobart AK; Stymne S
    Biochem J; 1985 Sep; 230(2):379-88. PubMed ID: 4052051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular translocation of phosphatidate phosphatase in maturing safflower seeds: a possible mechanism of feedforward control of triacylglycerol synthesis by fatty acids.
    Ichihara K; Murota N; Fujii S
    Biochim Biophys Acta; 1990 Apr; 1043(3):227-34. PubMed ID: 2157488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsomal phosphatidate phosphatase in maturing safflower seeds.
    Ichihara K; Norikura S; Fujii S
    Plant Physiol; 1989 Jun; 90(2):413-9. PubMed ID: 16666786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in phosphatidate hydrolytic activity of human alkaline phosphatase isozymes.
    Sumikawa K; Okochi T; Adachi K
    Biochim Biophys Acta; 1990 Aug; 1046(1):27-31. PubMed ID: 2397242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulation of triacylglycerol biosynthesis in cocoa (Theobroma cacao) L.
    Griffiths G; Harwood JL
    Planta; 1991 May; 184(2):279-84. PubMed ID: 24194081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labelling of glycerolipids in the cotyledons of developing oilseeds by [1-14C] acetate and [2-3H] glycerol.
    Slack CR; Roughan PG; Balasingham N
    Biochem J; 1978 Feb; 170(2):421-33. PubMed ID: 580379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedback inhibition of phosphatidate phosphatase from spinach chloroplast envelope membranes by diacylglycerol.
    Malherbe A; Block MA; Joyard J; Douce R
    J Biol Chem; 1992 Nov; 267(33):23546-53. PubMed ID: 1429699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris), and amaranthus (Amaranthus lividus) leaves.
    Roughan G; Nishida I
    Arch Biochem Biophys; 1990 Jan; 276(1):38-46. PubMed ID: 2297229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diacylglycerol acyltransferase in maturing safflower seeds: its influences on the fatty acid composition of triacylglycerol and on the rate of triacylglycerol synthesis.
    Ichihara K; Takahashi T; Fujii S
    Biochim Biophys Acta; 1988 Jan; 958(1):125-9. PubMed ID: 3334861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty Acid Synthetase of Spinacia oleracea Leaves.
    Shimakata T; Stumpf PK
    Plant Physiol; 1982 Jun; 69(6):1257-62. PubMed ID: 16662382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interconversion of diacylglycerol and phosphatidylcholine during triacylglycerol production in microsomal preparations of developing cotyledons of safflower (Carthamus tinctorius L.).
    Stobart AK; Stymne S
    Biochem J; 1985 Nov; 232(1):217-21. PubMed ID: 4084230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The utilisation of fatty-acid substrates in triacylglycerol biosynthesis by tissue-slices of developing safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) cotyledons.
    Griffiths G; Stymne S; Stobart AK
    Planta; 1988 Mar; 173(3):309-16. PubMed ID: 24226537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fat Metabolism in Higher Plants: LXII. Stearl-acyl Carrier Protein Desaturase from Spinach Chloroplasts.
    Jacobson BS; Jaworski JG; Stumpf PK
    Plant Physiol; 1974 Oct; 54(4):484-6. PubMed ID: 16658913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of endogenous acyl-acyl carrier protein concentrations on fatty acid compositions of chloroplast glycerolipids.
    Roughan G; Matsuo T
    Arch Biochem Biophys; 1992 Aug; 297(1):92-100. PubMed ID: 1637187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some studies on the composition and surface properties of oil bodies from the seed cotyledons of safflower (Carthamus tinctorius) and linseed (Linum ustatissimum).
    Slack CR; Bertaud WS; Shaw BD; Holland R; Browse J; Wright H
    Biochem J; 1980 Sep; 190(3):551-61. PubMed ID: 7008782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental Profile of Diacylglycerol Acyltransferase in Maturing Seeds of Oilseed Rape and Safflower and Microspore-Derived Cultures of Oilseed Rape.
    Weselake RJ; Pomeroy MK; Furukawa TL; Golden JL; Little DB; Laroche A
    Plant Physiol; 1993 Jun; 102(2):565-571. PubMed ID: 12231845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positional Specificity and Fatty Acid Selectivity of Purified sn-Glycerol 3-Phosphate Acyltransferases from Chloroplasts.
    Bertrams M; Heinz E
    Plant Physiol; 1981 Sep; 68(3):653-7. PubMed ID: 16661974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of acetate- and pyruvate-dependent fatty-acid synthesis by spinach chloroplasts.
    Springer J; Heise KP
    Planta; 1989 Mar; 177(3):417-21. PubMed ID: 24212436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.