BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 24193945)

  • 1. Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method.
    Guan G; Li C; Ling Y; Yang Y; Vorstius JB; Keatch RP; Wang RK; Huang Z
    J Biomed Opt; 2013 Nov; 18(11):111417. PubMed ID: 24193945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical coherence elastography under homolateral parallel acoustic radiation force excitation for ocular elasticity quantification.
    Wang C; Fan F; Ma J; Ma Z; Meng X; Zhu J
    Opt Lett; 2024 May; 49(10):2817-2820. PubMed ID: 38748169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated optical coherence tomography and multielement ultrasound transducer probe for shear wave elasticity imaging of moving tissues.
    Karpiouk AB; VanderLaan DJ; Larin KV; Emelianov SY
    J Biomed Opt; 2018 Oct; 23(10):1-7. PubMed ID: 30369107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanobomb optical coherence elastography.
    Liu CH; Nevozhay D; Schill A; Singh M; Das S; Nair A; Han Z; Aglyamov S; Larin KV; Sokolov KV
    Opt Lett; 2018 May; 43(9):2006-2009. PubMed ID: 29714732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional elastic distribution imaging of the sclera using acoustic radiation force optical coherence elastography.
    Luo J; Zhang Y; Ai S; Shi G; Han X; Wang Y; Zhao Y; Yang H; Li Y; He X
    J Biophotonics; 2024 Feb; 17(2):e202300368. PubMed ID: 38010344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic radiation force optical coherence elastography for evaluating mechanical properties of soft condensed matters and its biological applications.
    Liu HC; Kijanka P; Urban MW
    J Biophotonics; 2020 Mar; 13(3):e201960134. PubMed ID: 31872545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of tendon strain during muscle twitch contractions using ultrasound elastography.
    Farron J; Varghese T; Thelen DG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):27-35. PubMed ID: 19213629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser-induced elastic wave classification: thermoelastic versus ablative regimes for all-optical elastography applications.
    Das S; Schill A; Liu CH; Aglyamov S; Larin KV
    J Biomed Opt; 2020 Mar; 25(3):1-13. PubMed ID: 32189479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classifying murine glomerulonephritis using optical coherence tomography and optical coherence elastography.
    Liu CH; Du Y; Singh M; Wu C; Han Z; Li J; Chang A; Mohan C; Larin KV
    J Biophotonics; 2016 Aug; 9(8):781-91. PubMed ID: 26791097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tendon motion and strain patterns evaluated with two-dimensional ultrasound elastography.
    Chernak LA; Thelen DG
    J Biomech; 2012 Oct; 45(15):2618-23. PubMed ID: 22939179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4D deep learning for real-time volumetric optical coherence elastography.
    Neidhardt M; Bengs M; Latus S; Schlüter M; Saathoff T; Schlaefer A
    Int J Comput Assist Radiol Surg; 2021 Jan; 16(1):23-27. PubMed ID: 32997312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative evaluation of biomechanical properties of optic nerve head by using acoustic radiation force optical coherence elastography.
    Shi G; Zhang Y; Han X; Ai S; Wang Y; Li Y; Shi J; He X; Zheng X
    Neurophotonics; 2023 Oct; 10(4):045008. PubMed ID: 38076723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confocal Shear Wave Acoustic Radiation Force Optical Coherence Elastography for Imaging and Quantification of the In Vivo Posterior Eye.
    He Y; Qu Y; Zhu J; Zhang Y; Saidi A; Ma T; Zhou Q; Chen Z
    IEEE J Sel Top Quantum Electron; 2019; 25(1):. PubMed ID: 32042240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical elastography and tissue biomechanics.
    Larin K; Scarcelli G; Yakovlev V
    J Biomed Opt; 2019 Nov; 24(11):1-9. PubMed ID: 31758675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic Radiation Force Optical Coherence Elastography of Corneal Tissue.
    Qu Y; Ma T; He Y; Zhu J; Dai C; Yu M; Huang S; Lu F; Shung KK; Zhou Q; Chen Z
    IEEE J Sel Top Quantum Electron; 2016; 22(3):. PubMed ID: 27293369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoacoustic elastography imaging: a review.
    Singh MS; Thomas A
    J Biomed Opt; 2019 Apr; 24(4):1-15. PubMed ID: 31041859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensing Inhalation Injury-Associated Changes in Airway Wall Compliance by Anatomic Optical Coherence Elastography.
    Bu R; Balakrishnan S; Iftimia N; Price H; Zdanski C; Mitran S; Oldenburg AL
    IEEE Trans Biomed Eng; 2021 Aug; 68(8):2360-2367. PubMed ID: 33175676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Nondestructive Viscosity Measurement of Soft Tissue Based on Viscoelastic Response Optical Coherence Elastography.
    Liu Z; Liu W; Chen Q; Hu Y; Li Y; Zheng X; Fang D; Liu H; Sun C
    Materials (Basel); 2023 Sep; 16(17):. PubMed ID: 37687714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional mechanical characterization of murine skeletal muscle using quantitative micro-elastography.
    Lloyd EM; Hepburn MS; Li J; Mowla A; Hwang Y; Choi YS; Grounds MD; Kennedy BF
    Biomed Opt Express; 2022 Nov; 13(11):5879-5899. PubMed ID: 36733728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of strain estimation methods in phase-sensitive compression optical coherence elastography.
    Li J; Pijewska E; Fang Q; Szkulmowski M; Kennedy BF
    Biomed Opt Express; 2022 Apr; 13(4):2224-2246. PubMed ID: 35519281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.