These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24194591)

  • 21. SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments.
    Gough J; Chothia C
    Nucleic Acids Res; 2002 Jan; 30(1):268-72. PubMed ID: 11752312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. indel-Seq-Gen: a new protein family simulator incorporating domains, motifs, and indels.
    Strope CL; Scott SD; Moriyama EN
    Mol Biol Evol; 2007 Mar; 24(3):640-9. PubMed ID: 17158778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of indels on the flanking regions in structural domains.
    Zhang Z; Huang J; Wang Z; Wang L; Gao P
    Mol Biol Evol; 2011 Jan; 28(1):291-301. PubMed ID: 20671041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SCOP database in 2004: refinements integrate structure and sequence family data.
    Andreeva A; Howorth D; Brenner SE; Hubbard TJ; Chothia C; Murzin AG
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D226-9. PubMed ID: 14681400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting the functional effect of amino acid substitutions and indels.
    Choi Y; Sims GE; Murphy S; Miller JR; Chan AP
    PLoS One; 2012; 7(10):e46688. PubMed ID: 23056405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SUPERFAMILY--sophisticated comparative genomics, data mining, visualization and phylogeny.
    Wilson D; Pethica R; Zhou Y; Talbot C; Vogel C; Madera M; Chothia C; Gough J
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D380-6. PubMed ID: 19036790
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SeqFIRE: a web application for automated extraction of indel regions and conserved blocks from protein multiple sequence alignments.
    Ajawatanawong P; Atkinson GC; Watson-Haigh NS; Mackenzie B; Baldauf SL
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W340-7. PubMed ID: 22693213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GenDiS database update with improved approach and features to recognize homologous sequences of protein domain superfamilies.
    Iyer MS; Bhargava K; Pavalam M; Sowdhamini R
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30943284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. General continuous-time Markov model of sequence evolution via insertions/deletions: are alignment probabilities factorable?
    Ezawa K
    BMC Bioinformatics; 2016 Aug; 17():304. PubMed ID: 27638547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The ProDom database of protein domain families: more emphasis on 3D.
    Bru C; Courcelle E; Carrère S; Beausse Y; Dalmar S; Kahn D
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D212-5. PubMed ID: 15608179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Defining and predicting structurally conserved regions in protein superfamilies.
    Huang IK; Pei J; Grishin NV
    Bioinformatics; 2013 Jan; 29(2):175-81. PubMed ID: 23193223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic analysis of short internal indels and their impact on protein folding.
    Kim R; Guo JT
    BMC Struct Biol; 2010 Aug; 10():24. PubMed ID: 20684774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution.
    Greene LH; Lewis TE; Addou S; Cuff A; Dallman T; Dibley M; Redfern O; Pearl F; Nambudiry R; Reid A; Sillitoe I; Yeats C; Thornton JM; Orengo CA
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D291-7. PubMed ID: 17135200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis.
    Pearl F; Todd A; Sillitoe I; Dibley M; Redfern O; Lewis T; Bennett C; Marsden R; Grant A; Lee D; Akpor A; Maibaum M; Harrison A; Dallman T; Reeves G; Diboun I; Addou S; Lise S; Johnston C; Sillero A; Thornton J; Orengo C
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D247-51. PubMed ID: 15608188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SCOP database in 2002: refinements accommodate structural genomics.
    Lo Conte L; Brenner SE; Hubbard TJ; Chothia C; Murzin AG
    Nucleic Acids Res; 2002 Jan; 30(1):264-7. PubMed ID: 11752311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DDBASE2.0: updated domain database with improved identification of structural domains.
    Vinayagam A; Shi J; Pugalenthi G; Meenakshi B; Blundell TL; Sowdhamini R
    Bioinformatics; 2003 Sep; 19(14):1760-4. PubMed ID: 14512346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SCOPPI: a structural classification of protein-protein interfaces.
    Winter C; Henschel A; Kim WK; Schroeder M
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D310-4. PubMed ID: 16381874
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein expansion is primarily due to indels in intrinsically disordered regions.
    Light S; Sagit R; Sachenkova O; Ekman D; Elofsson A
    Mol Biol Evol; 2013 Dec; 30(12):2645-53. PubMed ID: 24037790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of a database of structural alignments and phylogenetic trees in investigating the relationship between sequence and structural variability among homologous proteins.
    Balaji S; Srinivasan N
    Protein Eng; 2001 Apr; 14(4):219-26. PubMed ID: 11391013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolutionarily consistent families in SCOP: sequence, structure and function.
    Pethica RB; Levitt M; Gough J
    BMC Struct Biol; 2012 Oct; 12():27. PubMed ID: 23078280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.