These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 24194756)
1. Transient Neonatal Zinc Deficiency Caused by a Heterozygous G87R Mutation in the Zinc Transporter ZnT-2 (SLC30A2) Gene in the Mother Highlighting the Importance of Zn (2+) for Normal Growth and Development. Miletta MC; Bieri A; Kernland K; Schöni MH; Petkovic V; Flück CE; Eblé A; Mullis PE Int J Endocrinol; 2013; 2013():259189. PubMed ID: 24194756 [TBL] [Abstract][Full Text] [Related]
2. A dominant negative heterozygous G87R mutation in the zinc transporter, ZnT-2 (SLC30A2), results in transient neonatal zinc deficiency. Lasry I; Seo YA; Ityel H; Shalva N; Pode-Shakked B; Glaser F; Berman B; Berezovsky I; Goncearenco A; Klar A; Levy J; Anikster Y; Kelleher SL; Assaraf YG J Biol Chem; 2012 Aug; 287(35):29348-61. PubMed ID: 22733820 [TBL] [Abstract][Full Text] [Related]
3. Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. Chowanadisai W; Lönnerdal B; Kelleher SL J Biol Chem; 2006 Dec; 281(51):39699-707. PubMed ID: 17065149 [TBL] [Abstract][Full Text] [Related]
4. Internalization and trafficking of zinc transporters. Zhang C Methods Enzymol; 2023; 687():241-262. PubMed ID: 37666634 [TBL] [Abstract][Full Text] [Related]
5. Accumulation of different metals in oyster Crassostrea gigas: Significance and specificity of SLC39A (ZIP) and SLC30A (ZnT) gene families and polymorphism variation. Meng J; Wang WX; Li L; Zhang G Environ Pollut; 2021 May; 276():116706. PubMed ID: 33592447 [TBL] [Abstract][Full Text] [Related]
6. Compound heterozygous mutations in SLC30A2/ZnT2 results in low milk zinc concentrations: a novel mechanism for zinc deficiency in a breast-fed infant. Itsumura N; Inamo Y; Okazaki F; Teranishi F; Narita H; Kambe T; Kodama H PLoS One; 2013; 8(5):e64045. PubMed ID: 23741301 [TBL] [Abstract][Full Text] [Related]
7. Zinc fluxes and zinc transporter genes in chronic diseases. Devirgiliis C; Zalewski PD; Perozzi G; Murgia C Mutat Res; 2007 Sep; 622(1-2):84-93. PubMed ID: 17374385 [TBL] [Abstract][Full Text] [Related]
8. Exome Sequencing of SLC30A2 Identifies Novel Loss- and Gain-of-Function Variants Associated with Breast Cell Dysfunction. Alam S; Hennigar SR; Gallagher C; Soybel DI; Kelleher SL J Mammary Gland Biol Neoplasia; 2015 Dec; 20(3-4):159-72. PubMed ID: 26293594 [TBL] [Abstract][Full Text] [Related]
10. The families of zinc (SLC30 and SLC39) and copper (SLC31) transporters. Schweigel-Röntgen M Curr Top Membr; 2014; 73():321-55. PubMed ID: 24745988 [TBL] [Abstract][Full Text] [Related]
11. The presence and response to Zn of ZnT family mRNAs in human dental pulp. Wahono NA; Ford D; Wakeling LA; Valentine RA Metallomics; 2019 Mar; 11(3):613-620. PubMed ID: 30675888 [TBL] [Abstract][Full Text] [Related]
12. Novel mutations in SLC30A2 involved in the pathogenesis of transient neonatal zinc deficiency. Itsumura N; Kibihara Y; Fukue K; Miyata A; Fukushima K; Tamagawa-Mineoka R; Katoh N; Nishito Y; Ishida R; Narita H; Kodama H; Kambe T Pediatr Res; 2016 Oct; 80(4):586-94. PubMed ID: 27304099 [TBL] [Abstract][Full Text] [Related]
13. Zinc transporters in the rat mammary gland respond to marginal zinc and vitamin A intakes during lactation. Kelleher SL; Lönnerdal B J Nutr; 2002 Nov; 132(11):3280-5. PubMed ID: 12421840 [TBL] [Abstract][Full Text] [Related]
14. Novel Muto T; Kawase Y; Aiba K; Okuma M; Itsumura N; Luo S; Ogawa N; Tsuji T; Kambe T Pediatr Investig; 2023 Mar; 7(1):6-12. PubMed ID: 36967740 [TBL] [Abstract][Full Text] [Related]
15. Transient neonatal zinc deficiency due to a new autosomal dominant mutation in gene SLC30A2 (ZnT-2). Lova Navarro M; Vera Casaño A; Benito López C; Fernández Ballesteros MD; Godoy Díaz DJ; Crespo Erchiga A; Romero Brufau S Pediatr Dermatol; 2014; 31(2):251-2. PubMed ID: 24456035 [TBL] [Abstract][Full Text] [Related]
16. Zinc Transporters and the Progression of Breast Cancers. Takatani-Nakase T Biol Pharm Bull; 2018; 41(10):1517-1522. PubMed ID: 30270320 [TBL] [Abstract][Full Text] [Related]
17. Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Kelleher SL; McCormick NH; Velasquez V; Lopez V Adv Nutr; 2011 Mar; 2(2):101-11. PubMed ID: 22332039 [TBL] [Abstract][Full Text] [Related]
18. Transient Symptomatic Zinc Deficiency in a Breastfed Infant Associated with Low Zinc Levels in Maternal Serum and Breast Milk Improving after Zinc Supplementation: An Uncommon Phenotype? Vashist S; Rana A; Mahajan VK Indian Dermatol Online J; 2020; 11(4):623-626. PubMed ID: 32832457 [TBL] [Abstract][Full Text] [Related]
19. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway. Kambe T; Matsunaga M; Takeda TA Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29048339 [TBL] [Abstract][Full Text] [Related]
20. In situ dimerization of multiple wild type and mutant zinc transporters in live cells using bimolecular fluorescence complementation. Lasry I; Golan Y; Berman B; Amram N; Glaser F; Assaraf YG J Biol Chem; 2014 Mar; 289(11):7275-92. PubMed ID: 24451381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]